Suppr超能文献

成体神经发生对齿状回神经网络内模式分离的动态影响。

The dynamic impact of adult neurogenesis on pattern separation within the dentate gyrus neural network.

作者信息

Yang Kai, Sun Xiaojuan, Wang Zengbin

机构信息

School of Science, Beijing University of Posts and Telecommunications, 10 Xitucheng Road, Beijing, 100876 P.R. China.

Key Laboratory of Mathematics and Information Networks, Beijing University of Posts and Telecommunications, 10 Xitucheng Road, Beijing, 100876 P.R. China.

出版信息

Cogn Neurodyn. 2025 Dec;19(1):57. doi: 10.1007/s11571-025-10244-y. Epub 2025 Apr 4.

Abstract

Pattern separation in the dentate gyrus (DG) is crucial for distinguishing similar memories. The DG continues to undergo neurogenesis throughout the lifespan, and adult hippocampus neurogenesis leads to the incorporation of thousands of adult-born granule cells (adult-born GCs) into the existing DG circuitry. These newborn GCs exhibit high excitability and are easier to respond to novel stimuli, which seems to be contrary to the requirement of pattern separation for high input specificity. Meanwhile, the changes brought about by the growth of adult-born GCs can not be ignored. Here, we build a biologically relevant model of the DG containing adult-born GCs and test it using the Modified National Institute of Standards and Technology (MNIST) database. By analyzing this model, the results show that the net effect of adult-born GCs to GCs is inhibition, thereby improving the sparsity of GCs and pattern separation. This provides computational evidence for "indirect encoding" of adult-born GCs. In addition, as adult-born GCs transition toward maturity, they have the following growth characteristics: decreased activity, increased coupling strength with feedback inhibition, and enhanced synaptic plasticity. We find that the decreased activity reduces pattern separation efficiency while the other characteristics increase pattern separation efficiency. Finally, given that the firing rate of entorhinal cortex (EC) neurons is influenced by numerous factors (such as the complexity of memory tasks), the input frequency to the DG should be within a range rather than being fixed. To address this, we gradually increase the input frequency and notice that the presence of adult-born GCs increases the adaptability of the DG neural network and thus improves the robustness of pattern separation.

摘要

齿状回(DG)中的模式分离对于区分相似记忆至关重要。DG在整个生命周期中持续进行神经发生,而成人海马体神经发生会导致数千个新生颗粒细胞(成年新生GCs)融入现有的DG神经回路。这些新生GCs表现出高兴奋性,更容易对新刺激做出反应,这似乎与模式分离对高输入特异性的要求相悖。与此同时,成年新生GCs生长带来的变化也不容忽视。在此,我们构建了一个包含成年新生GCs的DG生物学相关模型,并使用改进的美国国家标准与技术研究院(MNIST)数据库对其进行测试。通过对该模型的分析,结果表明成年新生GCs对GCs的净效应是抑制作用,从而提高了GCs的稀疏性和模式分离能力。这为成年新生GCs的“间接编码”提供了计算证据。此外,随着成年新生GCs向成熟过渡,它们具有以下生长特征:活动减少、与反馈抑制的耦合强度增加以及突触可塑性增强。我们发现活动减少会降低模式分离效率,而其他特征则会提高模式分离效率。最后,鉴于内嗅皮质(EC)神经元的放电率受多种因素影响(如记忆任务的复杂性),DG的输入频率应在一定范围内而非固定不变。为了解决这个问题,我们逐渐增加输入频率,并注意到成年新生GCs的存在增加了DG神经网络的适应性,从而提高了模式分离的稳健性。

相似文献

本文引用的文献

3
Research on Network Model of Dentate Gyrus Based on Bionics.基于仿生学的齿状回网络模型研究。
J Healthc Eng. 2021 Dec 6;2021:4609741. doi: 10.1155/2021/4609741. eCollection 2021.
8

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验