Yang Yang, Zhang Wenjun, Wu Guangchen, Huang Qiang, Wen Jinghong, Wang Dingsheng, Liu Mingyang
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China.
Angew Chem Int Ed Engl. 2025 Jun 2;64(23):e202504423. doi: 10.1002/anie.202504423. Epub 2025 Apr 18.
The development of efficient electrocatalysts for CO reduction to CO is challenging due to competing hydrogen evolution and intermediate over-stabilization. In this study, a Cu-Co dual single-atom catalyst (CuCo-DSAC) anchored on carbon black was synthesized via scalable pyrolysis. The catalyst achieves 98.5% CO Faradaic efficiency at 500 mA cm, maintaining > 95% selectivity across a 400 mV window with < 6% decay over 48 h, which is superior to the corresponding single-atom control samples. In situ spectroscopy and DFT calculations reveal a synergistic mechanism: Co sites activate CO and stabilize *COOH intermediates, while adjacent Cu sites facilitate CO desorption by lowering the energy barrier through charge redistribution. This dynamic buffer system mitigates active-site blocking and suppresses HER by weakening H adsorption. The electronic interplay between Cu and Co optimizes intermediate energetics, enabling industrial-level performance. This work demonstrates the potential of tailored dual-site architectures for complex electrocatalytic processes, offering a promising approach to overcoming traditional limitations.
由于存在析氢竞争和中间体过度稳定化问题,开发用于将CO还原为CO的高效电催化剂具有挑战性。在本研究中,通过可扩展的热解合成了一种锚定在炭黑上的Cu-Co双单原子催化剂(CuCo-DSAC)。该催化剂在500 mA cm时实现了98.5%的CO法拉第效率,在400 mV的窗口内保持>95%的选择性,在48小时内衰减<6%,优于相应的单原子对照样品。原位光谱和密度泛函理论计算揭示了一种协同机制:Co位点激活CO并稳定*COOH中间体,而相邻的Cu位点通过电荷重新分布降低能垒来促进CO解吸。这种动态缓冲系统减轻了活性位点的阻塞,并通过减弱H吸附来抑制析氢反应。Cu和Co之间的电子相互作用优化了中间体的能量,实现了工业级性能。这项工作展示了定制双位点结构在复杂电催化过程中的潜力,为克服传统限制提供了一种有前景的方法。