Suppr超能文献

用于电催化二氧化碳还原为乙烯的金单原子掺杂缺陷纳米多孔铜八面体

Gold Single Atom Doped Defective Nanoporous Copper Octahedrons for Electrocatalytic Reduction of Carbon Dioxide to Ethylene.

作者信息

Zhao Yang, Wang Yanan, Yu Zhipeng, Song Chao, Wang Jingwei, Huang Haoliang, Meng Lijian, Liu Miao, Liu Lifeng

机构信息

Songshan Lake Materials Laboratory (SLAB), Dongguan 523808, P. R. China.

Institute of Physics, Chinese Academy of Sciences, Beijing 100090, P. R. China.

出版信息

ACS Nano. 2025 Feb 4;19(4):4505-4514. doi: 10.1021/acsnano.4c13961. Epub 2025 Jan 24.

Abstract

Electrocatalytic CO reduction into high-value multicarbon products offers a sustainable approach to closing the anthropogenic carbon cycle and contributing to carbon neutrality, particularly when renewable electricity is used to power the reaction. However, the lack of efficient and durable electrocatalysts with high selectivity for multicarbons severely hinders the practical application of this promising technology. Herein, a nanoporous defective AuCu single-atom alloy (De-AuCu SAA) catalyst is developed through facile low-temperature thermal reduction in hydrogen and a subsequent dealloying process, which shows high selectivity toward ethylene (CH), with a Faradaic efficiency of 52% at the current density of 252 mA cm under a potential of -1.1 V versus reversible hydrogen electrode (RHE). In situ spectroscopy measurements and density functional theory (DFT) calculations reveal that the high CH product selectivity results from the synergistic effect between Au single atoms and defective Cu sites on the surface of catalysts, where Au single atoms promote *CO generation and Cu defects stabilize the key intermediate *OCCO, which altogether enhances C-C coupling kinetics. This work provides important insights into the catalyst design for electrochemical CO reduction to multicarbon products.

摘要

将电催化CO还原为高价值多碳产物为闭合人为碳循环和促进碳中和提供了一种可持续的方法,特别是当使用可再生电力为该反应供电时。然而,缺乏对多碳具有高选择性的高效耐用电催化剂严重阻碍了这项有前景的技术的实际应用。在此,通过在氢气中进行简便的低温热还原以及随后的脱合金过程,开发了一种纳米多孔缺陷AuCu单原子合金(De-AuCu SAA)催化剂,该催化剂对乙烯(CH)表现出高选择性,在相对于可逆氢电极(RHE)为-1.1 V的电位下,在252 mA cm的电流密度下,法拉第效率为52%。原位光谱测量和密度泛函理论(DFT)计算表明,高CH产物选择性源于催化剂表面Au单原子与缺陷Cu位点之间的协同效应,其中Au单原子促进CO生成,Cu缺陷稳定关键中间体OCCO,这共同增强了C-C偶联动力学。这项工作为电化学CO还原为多碳产物的催化剂设计提供了重要见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验