Dan Tingting, Huang Yanquan, Yang Yang, Wu Guorong
IEEE Trans Med Imaging. 2025 Jul;44(7):3100-3109. doi: 10.1109/TMI.2025.3558691.
Positron Emission Tomography (PET) is essential for understanding the pathophysiological mechanisms underlying neurodegenerative diseases like Alzheimer's disease (AD). However, existing approaches primarily focus on stereotypical patterns of pathology burden, lacking the ability to elucidate the underlying propagation mechanisms by which pathologies spread throughout the brain over time. Given that many neurodegenerative diseases exhibit prion-like pathology spread, it is essential to uncover the spot-to-spot flow field between consecutive PET snapshots. To address this, we reformulate the problem of identifying latent cortical propagation pathways of neuropathological burden within the well-established framework of optimal mass transport (OMT). In this formulation, the dynamic spreading of pathology across longitudinal PET scans is inherently constrained by the geometry of the brain cortex. To solve this problem, we introduce a variational framework that characterizes the dynamical system of pathology propagation in the brain, ultimately reducing to a Wasserstein geodesic between two density distributions of pathology accumulation. Furthermore, we hypothesize that a well-characterized mechanism of pathology propagation will enable the prediction of future pathology accumulation at the individual level, paving the way for personalized disease progression modeling. Building on the principles of physics-informed deep models, we derive the governing equation of the underlying OMT model and introduce an explainable, generative adversarial network-inspired framework. Our approach (1) parameterizes population-level OMT dynamics through a flow adjuster and (2) predicts the spreading flow in unseen subjects using a trained flow driver. We validate the accuracy of our model on publicly available datasets, demonstrating its effectiveness in forecasting future pathology accumulation. Since our deep model adheres to the second law of thermodynamics, we further explore the propagation dynamics of tau aggregates throughout the progression of AD. In contrast to traditional methods, our physics-informed approach enhances both accuracy and interpretability, demonstrating its potential to reveal novel neurobiological mechanisms driving disease progression.
正电子发射断层扫描(PET)对于理解诸如阿尔茨海默病(AD)等神经退行性疾病背后的病理生理机制至关重要。然而,现有方法主要集中在病理负担的刻板模式上,缺乏阐明随着时间推移病理在大脑中传播的潜在传播机制的能力。鉴于许多神经退行性疾病表现出朊病毒样的病理传播,揭示连续PET快照之间的逐点流场至关重要。为了解决这个问题,我们在成熟的最优质量传输(OMT)框架内重新构建了识别神经病理负担潜在皮质传播途径的问题。在此框架中,纵向PET扫描中病理的动态传播本质上受大脑皮质几何形状的约束。为了解决这个问题,我们引入了一个变分框架,该框架表征了大脑中病理传播的动态系统,最终归结为两个病理积累密度分布之间的瓦瑟斯坦测地线。此外,我们假设一种特征明确的病理传播机制将能够在个体水平上预测未来的病理积累,为个性化疾病进展建模铺平道路。基于物理信息深度模型的原理,我们推导了潜在OMT模型的控制方程,并引入了一个受可解释的生成对抗网络启发的框架。我们的方法(1)通过流量调节器对群体水平的OMT动态进行参数化,(2)使用训练好的流量驱动程序预测未见过的受试者中的传播流。我们在公开可用的数据集上验证了我们模型的准确性,证明了其在预测未来病理积累方面的有效性。由于我们的深度模型遵循热力学第二定律,我们进一步探索了tau聚集体在AD进展过程中的传播动态。与传统方法相比,我们基于物理信息的方法提高了准确性和可解释性,展示了其揭示驱动疾病进展的新型神经生物学机制的潜力。