Radić Laura, Offersgaard Anna, Kadavá Tereza, Zon Ian, Capella-Pujol Joan, Mulder Fabian, Koekkoek Sylvie, Spek Vera, Chumbe Ana, Bukh Jens, van Gils Marit J, Sanders Rogier W, Yin Victor C, Heck Albert J R, Gottwein Judith M, Sliepen Kwinten, Schinkel Janke
Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands.
Amsterdam Institute for Immunology and Infectious diseases, Amsterdam 1105 AZ, the Netherlands.
Proc Natl Acad Sci U S A. 2025 Apr 15;122(15):e2420402122. doi: 10.1073/pnas.2420402122. Epub 2025 Apr 7.
Hepatitis C virus (HCV) currently causes about one million infections and 240,000 deaths worldwide each year. To reach the goal set by the World Health Organization of global HCV elimination by 2030, it is critical to develop a prophylactic vaccine. Broadly neutralizing antibodies (bNAbs) target the E1E2 envelope glycoproteins on the viral surface, can neutralize a broad range of the highly diverse circulating HCV strains, and are essential tools to inform vaccine design. However, bNAbs targeting a single E1E2 epitope might be limited in neutralization breadth, which can be enhanced by using combinations of bNAbs that target different envelope epitopes. We have generated 60 immunoglobulin G (IgG)-like bispecific antibodies (bsAbs) that can simultaneously target two distinct epitopes on E1E2. We combine non- or partially overlapping E1E2 specificities into three types of bsAbs, each containing a different hinge length. The majority of bsAbs shows retained or increased potency and breadth against a diverse panel of HCV pseudoparticles and HCV produced in cell culture compared to monospecific and cocktail controls. Additionally, we demonstrate that changes in the hinge length of bsAbs can alter the binding stoichiometry to E1E2. These results provide insights into the binding modes and the role of avidity in bivalent targeting of diverse E1E2 epitopes.This study illustrates how potential cooperative effects of HCV bNAbs can be utilized by strategically designing bispecific constructs. These HCV bsAbs can guide vaccine development and unlock novel therapeutic and prophylactic strategies against HCV and other (flavi)viruses.
丙型肝炎病毒(HCV)目前在全球每年导致约100万例感染和24万例死亡。为实现世界卫生组织设定的到2030年全球消除HCV的目标,开发预防性疫苗至关重要。广泛中和抗体(bNAbs)靶向病毒表面的E1E2包膜糖蛋白,可中和多种高度多样的循环HCV毒株,是指导疫苗设计的重要工具。然而,靶向单个E1E2表位的bNAbs在中和广度上可能有限,通过使用靶向不同包膜表位的bNAbs组合可增强中和广度。我们生成了60种免疫球蛋白G(IgG)样双特异性抗体(bsAbs),它们可同时靶向E1E2上的两个不同表位。我们将非重叠或部分重叠的E1E2特异性组合成三种类型的bsAbs,每种bsAbs的铰链长度不同。与单特异性和混合对照相比,大多数bsAbs对多种HCV假颗粒和细胞培养中产生的HCV显示出保留或增强的效力和广度。此外,我们证明bsAbs铰链长度的变化可改变其与E1E2的结合化学计量。这些结果为双价靶向不同E1E2表位的结合模式和亲和力作用提供了见解。本研究说明了如何通过策略性设计双特异性构建体来利用HCV bNAbs的潜在协同效应。这些HCV bsAbs可指导疫苗开发,并开启针对HCV和其他(黄病毒科)病毒的新型治疗和预防策略。