Suppr超能文献

过氧化物酶催化生成三重态丙酮以及异丁醛与分子氧发生化学发光反应。

Peroxidase-catalyzed formation of triplet acetone and chemiluminescence from isobutyraldehyde and molecular oxygen.

作者信息

Baader W J, Bohne C, Cilento G, Dunford H B

出版信息

J Biol Chem. 1985 Aug 25;260(18):10217-25.

PMID:4019508
Abstract

It has been established that the horseradish peroxidase/O2/isobutyraldehyde (IBAL) system leads to triplet acetone and formic acid formation followed by phosphorescence of the triplet acetone (see, for example, Bechara, E.J.H., Faria Oliveira, O.M.M., Durán, N., Casadei de Baptista, R., and Cilento, G. (1979) Photochem. Photobiol. 30, 101-110). In this paper many of the mechanistic details are established. The reaction is initiated by the autoxidation of IBAL to form the peracid (CH3)2CHC = O(OOH). The peracid converts horseradish peroxidase into compound I which in turn is converted into compound II by abstracting the alcoholic hydrogen atom from the enol form of IBAL. This creates a free radical with two resonance forms. (Formula: see text) Addition of molecular oxygen to the latter resonance form creates a peroxy radical which abstracts a hydrogen atom near the active site of the enzyme. The newly formed alpha-peroxide in turn forms a dioxetane-type of intermediate which rapidly decomposes into triplet acetone and formic acid. Compound II reacts with the enol by the same pathway as compound I. Thus native horseradish peroxidase is regenerated. The hydrogen atom abstraction near the enzyme active site may occur directly from ethanol, present to solubilize IBAL or from a group on the enzyme, in which case ethanol participates in a repair mechanism. Phosphate buffer is necessary because it catalyzes the keto-enol conversion of IBAL. Thus horseradish peroxidase participates in a normal peroxidatic cycle. The only chain reaction is the uncatalyzed autoxidation of IBAL, most of which occurs prior to the mixing of IBAL with the oxygenated horseradish peroxidase solution.

摘要

已经确定,辣根过氧化物酶/O₂/异丁醛(IBAL)体系会生成三重态丙酮和甲酸,随后三重态丙酮会发生磷光现象(例如,参见Bechara, E.J.H., Faria Oliveira, O.M.M., Durán, N., Casadei de Baptista, R., 和Cilento, G. (1979) Photochem. Photobiol. 30, 101 - 110)。在本文中,许多机理细节得以确定。该反应由IBAL的自氧化引发,形成过酸(CH₃)₂CHC = O(OOH)。过酸将辣根过氧化物酶转化为化合物I,而化合物I又通过从IBAL的烯醇形式中提取醇氢原子转化为化合物II。这产生了具有两种共振形式的自由基。(化学式:见原文)向后者的共振形式添加分子氧会产生过氧自由基,该过氧自由基会在酶的活性位点附近提取一个氢原子。新形成的α-过氧化物进而形成二氧杂环丁烷型中间体,该中间体迅速分解为三重态丙酮和甲酸。化合物II通过与化合物I相同的途径与烯醇反应。因此,天然辣根过氧化物酶得以再生。酶活性位点附近的氢原子提取可能直接来自用于溶解IBAL的乙醇,也可能来自酶上的一个基团,在这种情况下,乙醇参与修复机制。磷酸盐缓冲液是必需的,因为它催化IBAL的酮 - 烯醇转化。因此,辣根过氧化物酶参与了一个正常的过氧化物循环。唯一的链反应是IBAL的无催化自氧化,其中大部分发生在IBAL与含氧辣根过氧化物酶溶液混合之前。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验