Somsen Elizabeth D, Septer Kayla M, Field Cassandra J, Patel Devanshi R, Lowen Anice C, Sutton Troy C, Koelle Katia
Graduate Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA, USA.
Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, State College, PA, USA.
bioRxiv. 2025 Mar 24:2025.03.24.645081. doi: 10.1101/2025.03.24.645081.
In the past two decades, two pandemic respiratory viruses (H1N1 and SARS-CoV-2) have emerged via spillover from animal reservoirs. In an effort to avert future pandemics, surveillance studies aimed at identifying zoonotic viruses at high risk of spilling over into humans act to monitor the 'viral chatter' at the animal-human interface. These studies are hampered, however, by the diversity of zoonotic viruses and the limited tools available to assess pandemic risk. Methods currently in use include the characterization of candidate viruses using laboratory assays and experimental transmission studies in animal models. However, transmission experiments yield relatively low-resolution outputs that are not immediately translatable to projections of viral dynamics at the level of a host population. To address this gap, we present an analytical framework to extend the use of measurements from experimental transmission studies to generate more quantitative risk assessments. Specifically, we develop modeling approaches for estimating transmission parameters and gauging population-level emergence risk using within-host viral titer data from index and contact animals. To illustrate the use of these approaches, we apply them to two recently published influenza A virus (IAV) ferret transmission experiments: one using influenza A/California/07/2009 (H1N1pdm09) and one using influenza A/Hong Kong/1/1968 (H3N2). We find that, when controlling for viral titers, the H3N2 virus tends to be less transmissible than the H1N1 virus. Because of this difference in infectiousness and more robust replication of H1N1 in ferrets, we further find that the H1N1 virus has a higher projected reproduction number than the H3N2 virus and therefore more likely to cause an epidemic following introduction. Incorporating estimates of the generation interval for each virus, we find that the H1N1 virus has a higher projected epidemic growth rate than the H3N2 virus. The methods we present to assess relative pandemic risk across viral isolates can be used to improve quantitative risk assessment of other emerging viruses of pandemic concern.
在过去二十年中,两种大流行呼吸道病毒(甲型H1N1流感病毒和严重急性呼吸综合征冠状病毒2)通过从动物宿主外溢而出现。为了避免未来的大流行,旨在识别有高风险外溢到人类的人畜共患病毒的监测研究,致力于监测动物与人类界面处的“病毒交流”。然而,这些研究受到人畜共患病毒多样性以及用于评估大流行风险的工具有限的阻碍。目前使用的方法包括使用实验室检测对候选病毒进行特征描述以及在动物模型中进行实验性传播研究。然而,传播实验产生的分辨率相对较低的结果,并不能立即转化为宿主群体水平上病毒动态的预测。为了填补这一空白,我们提出了一个分析框架,以扩展实验性传播研究测量结果的用途,从而生成更定量的风险评估。具体而言,我们开发了建模方法,用于使用来自指数动物和接触动物的宿主体内病毒滴度数据来估计传播参数并衡量群体水平的出现风险。为了说明这些方法的用途,我们将它们应用于最近发表的两项甲型流感病毒(IAV)雪貂传播实验:一项使用甲型/加利福尼亚/07/2009(H1N1pdm09),另一项使用甲型/香港/1/1968(H3N2)。我们发现,在控制病毒滴度时,H3N2病毒的传播性往往低于H1N1病毒。由于这种传染性差异以及H1N1在雪貂中更强的复制能力,我们进一步发现,H1N1病毒的预测繁殖数高于H3N2病毒,因此在引入后更有可能引发疫情。结合每种病毒的代间隔估计,我们发现H1N1病毒的预测疫情增长率高于H3N2病毒。我们提出的评估不同病毒分离株相对大流行风险的方法,可用于改进对其他令人担忧的新兴大流行病毒的定量风险评估。