Nguyen Emmy, Agbavor Charles, Steenhaut Anjali, Pratyush M R, Hiller N Luisa, Cahoon Laty A, Mikheyeva Irina V, Ng Wai-Leung, Bridges Andrew A
Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
bioRxiv. 2025 Mar 24:2025.03.24.645060. doi: 10.1101/2025.03.24.645060.
Two-component signaling pathways allow bacteria to sense and respond to environmental changes, yet the sensory mechanisms of many remain poorly understood. In the pathogen , the DbfRS two-component system controls the biofilm lifecycle, a critical process for environmental persistence and host colonization. Here, we identified DbfQ, a small periplasmic protein encoded adjacent to , as a direct modulator of pathway activity. DbfQ directly binds the sensory domain of the histidine kinase DbfS, shifting it toward phosphatase activity and promoting biofilm dispersal. In contrast, outer membrane perturbations, caused by mutations in lipopolysaccharide biosynthesis genes or membrane-damaging antimicrobials, activate phosphorylation of the response regulator DbfR. Transcriptomic analyses reveal that DbfR phosphorylation leads to broad transcriptional changes spanning genes involved in biofilm formation, central metabolism, peptidoglycan synthesis, and cellular stress responses. Constitutive DbfR phosphorylation imposes severe fitness costs in an infection model, highlighting this pathway as a potential target for anti-infective therapeutics. We find that -like genetic modules are widely present across bacterial phyla, underscoring their broad relevance in bacterial physiology. Collectively, these findings establish DbfQ as a new class of periplasmic regulator that influences two-component signaling and bacterial adaptation.
双组分信号通路使细菌能够感知并响应环境变化,然而许多双组分信号通路的传感机制仍知之甚少。在病原体中,DbfRS双组分系统控制生物膜生命周期,这是在环境中持续存在和定殖于宿主的关键过程。在此,我们鉴定出DbfQ,一种编码于[此处原文缺失相关基因名称]附近的小周质蛋白,作为该信号通路活性的直接调节剂。DbfQ直接结合组氨酸激酶DbfS的传感结构域,使其向磷酸酶活性转变并促进生物膜分散。相比之下,由脂多糖生物合成基因的突变或破坏膜的抗菌剂引起的外膜扰动,会激活反应调节因子DbfR的磷酸化。转录组分析表明,DbfR磷酸化会导致广泛的转录变化,涉及参与生物膜形成、中心代谢、肽聚糖合成和细胞应激反应的基因。在感染模型中,组成型DbfR磷酸化会带来严重的适应性代价,凸显该信号通路作为抗感染治疗潜在靶点的可能性。我们发现类似的遗传模块广泛存在于各细菌门类中,强调了它们在细菌生理学中的广泛相关性。总体而言,这些发现确立了DbfQ作为一类新型周质调节剂的地位,其可影响双组分信号传导和细菌适应性。