Zhou Nanqing, Wilkes Rebecca A, Chen Xinyu, Teitel Kelly P, Belgrave James A, Beckham Gregg T, Werner Allison Z, Yu Yanbao, Aristilde Ludmilla
Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL 60208, USA.
Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA.
bioRxiv. 2025 Mar 24:2025.03.24.645021. doi: 10.1101/2025.03.24.645021.
Soil species, which can thrive on lignin-derived phenolic compounds, are widely explored for biotechnology applications. Yet, there is limited understanding of how the native metabolism coordinates phenolic carbon processing with cofactor generation. Here, we achieve quantitative understanding of this metabolic balance through a multi-omics investigation of KT2440 grown on four common phenolic substrates: ferulate, coumarate, vanillate, and 4-hydroxybenzoate. Relative to succinate as a non-aromatic reference, proteomics data reveal >140-fold increase in proteins for transport and initial catabolism of each phenolic substrate, but metabolomics profiling reveals that bottleneck nodes in initial phenolic compound catabolism maintain more favorable cellular energy state. Up to 30-fold increase in pyruvate carboxylase and glyoxylate shunt proteins implies a metabolic remodeling confirmed by kinetic C-metabolomics. Quantitative analysis by C-fluxomics demonstrates coupling of this remodeling with cofactor production. Specifically, anaplerotic carbon recycling via pyruvate carboxylase promotes fluxes in the tricarboxylic acid cycle to provide 50-60% NADPH yield and 60-80% NADH yield, resulting in 2-fold higher ATP yield than for succinate metabolism; the glyoxylate shunt sustains cataplerotic flux through malic enzyme for the remaining NADPH yield. The quantitative blueprint elucidated here explains deficient versus sufficient cofactor rebalancing during manipulations of key metabolic nodes in lignin valorization.
能够在木质素衍生的酚类化合物上茁壮成长的土壤物种,在生物技术应用方面得到了广泛探索。然而,对于天然代谢如何协调酚类碳加工与辅因子生成,人们的了解有限。在此,我们通过对在四种常见酚类底物(阿魏酸、香豆酸、香草酸和4-羟基苯甲酸)上生长的KT2440进行多组学研究,实现了对这种代谢平衡的定量理解。相对于作为非芳香族参考物的琥珀酸,蛋白质组学数据显示,每种酚类底物的运输和初始分解代谢相关蛋白质增加了140倍以上,但代谢组学分析表明,初始酚类化合物分解代谢中的瓶颈节点维持了更有利的细胞能量状态。丙酮酸羧化酶和乙醛酸分流蛋白增加了30倍,这意味着动力学C代谢组学证实了代谢重塑。C通量组学的定量分析表明,这种重塑与辅因子产生相关联。具体而言,通过丙酮酸羧化酶的回补碳循环促进了三羧酸循环中的通量,以提供50-60%的NADPH产量和60-80%的NADH产量,导致ATP产量比琥珀酸代谢高2倍;乙醛酸分流通过苹果酸酶维持分解代谢通量以获得其余的NADPH产量。此处阐明的定量蓝图解释了木质素 valorization中关键代谢节点操作过程中辅因子再平衡不足与充足的情况。