Huuki-Myers Louise A, Montgomery Kelsey D, Kwon Sang Ho, Cinquemani Sophia, Eagles Nicholas J, Gonzalez-Padilla Daianna, Maden Sean K, Kleinman Joel E, Hyde Thomas M, Hicks Stephanie C, Maynard Kristen R, Collado-Torres Leonardo
Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
UK Dementia Research Institute at the University of Cambridge, Cambridge, UK.
Genome Biol. 2025 Apr 7;26(1):88. doi: 10.1186/s13059-025-03552-3.
Cellular deconvolution of bulk RNA-sequencing data using single cell/nuclei RNA-seq reference data is an important strategy for estimating cell type composition in heterogeneous tissues, such as the human brain. Here, we generate a multi-assay dataset in postmortem human dorsolateral prefrontal cortex from 22 tissue blocks, including bulk RNA-seq, reference snRNA-seq, and orthogonal measurement of cell type proportions with RNAScope/ImmunoFluorescence. We use this dataset to evaluate six deconvolution algorithms. Bisque and hspe were the most accurate methods. The dataset, as well as the Mean Ratio gene marker finding method, is made available in the DeconvoBuddies R/Bioconductor package.
使用单细胞/细胞核RNA测序参考数据对批量RNA测序数据进行细胞反卷积,是估计异质组织(如人类大脑)中细胞类型组成的重要策略。在这里,我们从22个组织块中生成了一个死后人类背外侧前额叶皮层的多检测数据集,包括批量RNA测序、参考单细胞核RNA测序,以及使用RNAscope/免疫荧光对细胞类型比例进行的正交测量。我们使用这个数据集来评估六种反卷积算法。Bisque和hspe是最准确的方法。该数据集以及平均比率基因标记发现方法可在DeconvoBuddies R/Bioconductor软件包中获取。