Suppr超能文献

混合法:具有自动参考选择功能的概率性细胞反卷积法

BLEND: Probabilistic Cellular Deconvolution with Automated Reference Selection.

作者信息

Huang Penghui, Cai Manqi, McKennan Chris, Wang Jiebiao

机构信息

Department of Biostatistics, University of Pittsburgh, De Soto St, Pittsburgh, 15261, PA, USA.

Department of Statistics, University of Pittsburgh, S Bouquet St, Pittsburgh, 15213, PA, USA.

出版信息

bioRxiv. 2024 Aug 6:2024.08.02.606458. doi: 10.1101/2024.08.02.606458.

Abstract

Cellular deconvolution aims to estimate cell type fractions from bulk transcriptomic and other omics data. Most existing deconvolution methods fail to account for the heterogeneity in cell type-specific (CTS) expression across bulk samples, ignore discrepancies between CTS expression in bulk and cell type reference data, and provide no guidance on cell type reference selection or integration. To address these issues, we introduce BLEND, a hierarchical Bayesian method that leverages multiple reference datasets. BLEND learns the most suitable references for each bulk sample by exploring the convex hulls of references and employs a "bag-of-words" representation for bulk count data for deconvolution. To speed up the computation, we provide an efficient EM algorithm for parameter estimation. Notably, BLEND requires no data transformation, normalization, cell type marker gene selection, or reference quality evaluation. Benchmarking studies on both simulated and real human brain data highlight BLEND's superior performance in various scenarios. The analysis of Alzheimer's disease data illustrates BLEND's application in real data and reference resource integration.

摘要

细胞反卷积旨在从批量转录组数据和其他组学数据中估计细胞类型比例。大多数现有的反卷积方法未能考虑批量样本中细胞类型特异性(CTS)表达的异质性,忽略了批量样本中CTS表达与细胞类型参考数据之间的差异,并且没有提供关于细胞类型参考选择或整合的指导。为了解决这些问题,我们引入了BLEND,这是一种利用多个参考数据集的分层贝叶斯方法。BLEND通过探索参考数据集的凸包为每个批量样本学习最合适的参考,并采用“词袋”表示法对批量计数数据进行反卷积。为了加快计算速度,我们提供了一种用于参数估计的高效期望最大化(EM)算法。值得注意的是,BLEND不需要数据转换、归一化、细胞类型标记基因选择或参考质量评估。对模拟和真实人类大脑数据的基准研究突出了BLEND在各种场景下的卓越性能。对阿尔茨海默病数据的分析说明了BLEND在实际数据和参考资源整合中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12b4/11326155/bca2f1cd252f/nihpp-2024.08.02.606458v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验