Suppr超能文献

M4:用于组织病理学图像分析中多实例学习的多代理多门专家混合网络

M4: Multi-proxy multi-gate mixture of experts network for multiple instance learning in histopathology image analysis.

作者信息

Li Junyu, Zhang Ye, Shu Wen, Feng Xiaobing, Wang Yingchun, Yan Pengju, Li Xiaolin, Sha Chulin, He Min

机构信息

Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.

Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.

出版信息

Med Image Anal. 2025 Jul;103:103561. doi: 10.1016/j.media.2025.103561. Epub 2025 Apr 1.

Abstract

Multiple instance learning (MIL) has been successfully applied for whole slide images (WSIs) analysis in computational pathology, enabling a wide range of prediction tasks from tumor subtyping to inferring genetic mutations and multi-omics biomarkers. However, existing MIL methods predominantly focus on single-task learning, resulting in not only overall low efficiency but also the overlook of inter-task relatedness. To address these issues, we proposed an adapted architecture of Multi-gate Mixture-of-experts with Multi-proxy for Multiple instance learning (M4), and applied this framework for simultaneous prediction of multiple genetic mutations from WSIs. The proposed M4 model has two main innovations: (1) adopting a multi-gate mixture-of-experts strategy for multiple genetic mutation simultaneous prediction on a single WSI; (2) introducing a multi-proxy CNN construction on the expert and gate networks to effectively and efficiently capture patch-patch interactions from WSI. Our model achieved significant improvements across five tested TCGA datasets in comparison to current state-of-the-art single-task methods. The code is available at: https://github.com/Bigyehahaha/M4.

摘要

多实例学习(MIL)已成功应用于计算病理学中的全切片图像(WSI)分析,实现了从肿瘤亚型分类到推断基因突变和多组学生物标志物等广泛的预测任务。然而,现有的MIL方法主要侧重于单任务学习,不仅导致整体效率低下,还忽略了任务间的相关性。为了解决这些问题,我们提出了一种适用于多实例学习的带多代理的多门专家混合架构(M4),并将该框架应用于从WSI中同时预测多个基因突变。所提出的M4模型有两个主要创新点:(1)采用多门专家混合策略在单个WSI上同时预测多个基因突变;(2)在专家网络和门控网络上引入多代理卷积神经网络结构,以有效且高效地捕捉WSI中补丁与补丁之间的相互作用。与当前最先进的单任务方法相比,我们的模型在五个测试的TCGA数据集中均取得了显著改进。代码可在以下网址获取:https://github.com/Bigyehahaha/M4。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验