Moussavi Arman, Wu Zhenghao, Pal Subhadeep, Keten Sinan
Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States.
Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, P. R. China.
Nano Lett. 2025 Apr 23;25(16):6637-6644. doi: 10.1021/acs.nanolett.5c00680. Epub 2025 Apr 8.
Polymer-grafted nanoparticles (PGNs) in matrix-free nanocomposites offer unique opportunities for highly loaded nanocomposites and superior mechanical performance compared to neat polymers. However, increasing Young's modulus with high nanoparticle volume fractions generally reduces toughness. This study uses coarse-grained molecular dynamics simulations to examine how grafted chain length, grafting density, and nanoparticle size affect the high strain rate mechanical performance of glassy PGN systems. Young's modulus generally increases with the inorganic volume fraction but deviates across grafting densities due to steric hindrance near the PGN core, causing stiffening. Sparsely grafted PGNs demonstrate superior toughness due to the release of nanoconfinement in the polymer brush. This reduction in confinement enables high interdigitation, facilitating effective inter-PGN entanglements that drive strain hardening and enhance toughness. Finally, two primary fracture mechanisms, disentanglement and chain scission, are attributed to enabling sustained energy dissipation during large deformations, promoting PGN toughness.
与纯聚合物相比,无基体纳米复合材料中的聚合物接枝纳米颗粒(PGN)为高负载纳米复合材料提供了独特的机遇以及卓越的机械性能。然而,随着纳米颗粒体积分数的增加,杨氏模量的提高通常会降低韧性。本研究采用粗粒度分子动力学模拟来研究接枝链长度、接枝密度和纳米颗粒尺寸如何影响玻璃态PGN体系的高应变率力学性能。杨氏模量通常随无机体积分数的增加而增大,但由于PGN核附近的空间位阻,不同接枝密度下会出现偏差,导致材料变硬。由于聚合物刷中纳米限域效应的释放,稀疏接枝的PGN表现出卓越的韧性。这种限域效应的降低使得高度相互穿插成为可能,促进了PGN之间有效的缠结,从而驱动应变硬化并提高韧性。最后,两种主要的断裂机制,即解缠结和链断裂,被认为是在大变形过程中实现持续能量耗散、提高PGN韧性的原因。