Suppr超能文献

基于可穿戴设备数据,利用迁移学习和策略性过拟合的个性化健康预测人工智能模型。

Personalized Health Prediction AI Models Using Transfer Learning and Strategic Overfitting on Wearable Device Data.

作者信息

Jeong Inyong, Kong Seokjin, Kim Yeongmin, Kim Yihyun, Kim Byeongsu, Ahn Se-Jin, Kim Ju-Wan, Lee Hwamin

机构信息

Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Republic of Korea.

Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea.

出版信息

J Med Syst. 2025 Apr 9;49(1):45. doi: 10.1007/s10916-025-02180-5.

Abstract

The increasing availability of wearable device data provides an opportunity for developing personalized models for health monitoring and condition prediction. Unlike conventional approaches that rely on pooled data from diverse individuals, our study explores the strategy of intentionally overfitting models to personal data and subsequently applying a transfer learning technique to refine performance for each user. We predicted Next-Day Condition (NDC) and Next-Day Emotion (NDC) while considering diverse features such as physical activity, sleep patterns, environmental context, and self-reported measures. Initial experiments showed that models trained at the sample level performed better on evaluation data but failed to generalize effectively during external validation. In contrast, our personalized learning approach, initiated with a pre-trained model, significantly enhanced accuracy within ten days of incremental user-specific training. Although generalization across the entire cohort diminished after individual tailoring, extended individualized training increased the overall predictive accuracy for each participant's personal data. The interpretation of feature importance using Shapley's additive explanations revealed substantial variability in the features influencing predictions across individuals, emphasizing the need for tailored health models. These findings highlight the potential of combining intentional overfitting and transfer learning in constructing high-performance user-specific predictive models from wearable data. Future research should expand the number of participants, extend the training period, and refine these methods to bolster personalized digital health solutions.

摘要

可穿戴设备数据的日益普及为开发用于健康监测和状况预测的个性化模型提供了契机。与依赖来自不同个体的汇总数据的传统方法不同,我们的研究探索了故意使模型过度拟合个人数据,随后应用迁移学习技术来优化每个用户性能的策略。在考虑诸如身体活动、睡眠模式、环境背景和自我报告的测量等多种特征的同时,我们预测了次日状况(NDC)和次日情绪(NDE)。初步实验表明,在样本水平上训练的模型在评估数据上表现更好,但在外部验证期间未能有效泛化。相比之下,我们以预训练模型启动的个性化学习方法,在针对特定用户的增量训练的十天内显著提高了准确率。尽管在个体定制后跨整个队列的泛化能力有所下降,但延长的个性化训练提高了每个参与者个人数据的总体预测准确率。使用沙普利值加法解释对特征重要性进行解释,揭示了影响个体预测的特征存在很大差异,强调了定制健康模型的必要性。这些发现突出了在从可穿戴数据构建高性能的特定用户预测模型中结合故意过度拟合和迁移学习的潜力。未来的研究应扩大参与者数量、延长训练期并完善这些方法,以加强个性化数字健康解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验