Suppr超能文献

跨不同外观领域和任务类型的迁移学习影响因素。

Factors of Influence for Transfer Learning Across Diverse Appearance Domains and Task Types.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9298-9314. doi: 10.1109/TPAMI.2021.3129870. Epub 2022 Nov 7.

Abstract

Transfer learning enables to re-use knowledge learned on a source task to help learning a target task. A simple form of transfer learning is common in current state-of-the-art computer vision models, i.e., pre-training a model for image classification on the ILSVRC dataset, and then fine-tune on any target task. However, previous systematic studies of transfer learning have been limited and the circumstances in which it is expected to work are not fully understood. In this paper we carry out an extensive experimental exploration of transfer learning across vastly different image domains (consumer photos, autonomous driving, aerial imagery, underwater, indoor scenes, synthetic, close-ups) and task types (semantic segmentation, object detection, depth estimation, keypoint detection). Importantly, these are all complex, structured output tasks types relevant to modern computer vision applications. In total we carry out over 2000 transfer learning experiments, including many where the source and target come from different image domains, task types, or both. We systematically analyze these experiments to understand the impact of image domain, task type, and dataset size on transfer learning performance. Our study leads to several insights and concrete recommendations: (1) for most tasks there exists a source which significantly outperforms ILSVRC'12 pre-training; (2) the image domain is the most important factor for achieving positive transfer; (3) the source dataset should include the image domain of the target dataset to achieve best results; (4) at the same time, we observe only small negative effects when the image domain of the source task is much broader than that of the target; (5) transfer across task types can be beneficial, but its success is heavily dependent on both the source and target task types.

摘要

迁移学习可以利用在源任务中学到的知识来帮助学习目标任务。迁移学习的一种简单形式在当前最先进的计算机视觉模型中很常见,即使用 ILSVRC 数据集对图像分类进行模型预训练,然后在任何目标任务上进行微调。然而,之前对迁移学习的系统研究是有限的,并且对其预期起作用的情况还不完全了解。在本文中,我们在非常不同的图像领域(消费者照片、自动驾驶、航空图像、水下、室内场景、合成、特写)和任务类型(语义分割、目标检测、深度估计、关键点检测)中进行了广泛的迁移学习实验探索。重要的是,这些都是与现代计算机视觉应用相关的复杂、结构化输出任务类型。我们总共进行了超过 2000 次迁移学习实验,包括许多源和目标来自不同图像领域、任务类型或两者兼有的实验。我们系统地分析这些实验,以了解图像域、任务类型和数据集大小对迁移学习性能的影响。我们的研究得出了一些见解和具体建议:(1)对于大多数任务,存在一个明显优于 ILSVRC'12 预训练的源;(2)图像域是实现正迁移的最重要因素;(3)源数据集应包含目标数据集的图像域以获得最佳结果;(4)同时,当源任务的图像域比目标任务的图像域宽得多时,我们只观察到很小的负面影响;(5)跨任务类型的迁移可能是有益的,但它的成功在很大程度上取决于源任务和目标任务的类型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验