Suppr超能文献

脱落酸诱导的可变剪接驱动大麦耐旱性的转录组重编程。

ABA-induced alternative splicing drives transcriptomic reprogramming for drought tolerance in barley.

作者信息

Collin Anna, Matkowski Hubert, Sybilska Ewa, Biantari Asmarany, Król Oliwia, Daszkowska-Golec Agata

机构信息

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40 - 032, Katowice, Poland.

出版信息

BMC Plant Biol. 2025 Apr 8;25(1):445. doi: 10.1186/s12870-025-06485-y.

Abstract

BACKGROUND

Abscisic acid (ABA) is a phytohormone that mediates plant responses to drought stress by regulating stomatal conductance, gene expression, and photosynthetic efficiency. Although ABA-induced stress priming has shown the potential to improve drought tolerance, the molecular mechanisms underlying ABA pretreatment effects remain poorly understood. This study aimed to determine how ABA pre-treatment at the booting stage influences physiological and molecular responses to drought at the heading stage in barley.

RESULTS

The ABA-treated plants exhibited earlier stomatal closure, increased expression of ABA-responsive genes (HvNCED1, HvBG8, and HvA22), and maintained higher chlorophyll levels under drought conditions. Photosynthetic parameters, including photosystem II activity, electron transport rate, and the number of active reaction centers, were preserved in ABA-pretreated plants compared with drought-only plants. Transcriptomic analysis revealed that ABA pre-treatment primed plants for faster activation of stress-responsive pathways, with enhanced expression of genes related to chromatin modifications, RNA metabolism, and ABA signaling during drought. Importantly, Alternative splicing (AS) and isoform switching were significantly amplified in ABA-pretreated plants, underscoring a unique molecular mechanism of ABA priming that enhances drought resilience. Post-stress recovery analysis revealed a greater number of differentially expressed genes (DEGs) and alternatively spliced transcripts (DAS) in ABA-pretreated plants, particularly those involved in chromatin organization and photosynthesis. Physiological analyses demonstrated that time- and dose-optimized ABA applications improved yield parameters, including grain weight and seed area, while mitigating spike sterility under drought conditions.

CONCLUSIONS

This study demonstrates that ABA pretreatment enhances drought resilience in barley by triggering early stomatal closure, preserving chlorophyll content, and maintaining photosynthetic performance under water stress. At the molecular level, ABA priming accelerates stress-response pathways, promoting alternative splicing, isoform switching, and chromatin modifications that enable transcriptome plasticity. These processes facilitate faster recovery and sustain critical yield components, such as spike number and grain weight, when ABA is applied at optimized timing and concentrations. While large-scale ABA application poses challenges, this study provides a framework for breeding and agronomic strategies to mimic ABA effects, offering a practical path to enhance drought tolerance and yield stability in barley.

摘要

背景

脱落酸(ABA)是一种植物激素,通过调节气孔导度、基因表达和光合效率来介导植物对干旱胁迫的响应。尽管ABA诱导的胁迫引发已显示出提高耐旱性的潜力,但ABA预处理效果的分子机制仍知之甚少。本研究旨在确定孕穗期ABA预处理如何影响大麦抽穗期对干旱的生理和分子响应。

结果

经ABA处理的植株气孔关闭更早,ABA响应基因(HvNCED1、HvBG8和HvA22)的表达增加,并且在干旱条件下保持较高的叶绿素水平。与仅受干旱处理的植株相比,ABA预处理植株的光合参数,包括光系统II活性、电子传递速率和活跃反应中心数量得以保留。转录组分析表明,ABA预处理使植株更快地激活胁迫响应途径,干旱期间与染色质修饰、RNA代谢和ABA信号传导相关的基因表达增强。重要的是,在ABA预处理植株中,可变剪接(AS)和异构体转换显著增加,突出了ABA引发增强干旱恢复力的独特分子机制。胁迫后恢复分析显示,ABA预处理植株中有更多的差异表达基因(DEG)和可变剪接转录本(DAS),特别是那些参与染色质组织和光合作用的基因。生理分析表明,经过时间和剂量优化的ABA处理提高了产量参数,包括粒重和种子面积,同时减轻了干旱条件下的穗不育。

结论

本研究表明,ABA预处理通过触发早期气孔关闭、保持叶绿素含量以及在水分胁迫下维持光合性能来增强大麦的干旱恢复力。在分子水平上,ABA引发加速胁迫响应途径,促进可变剪接、异构体转换和染色质修饰,从而实现转录组可塑性。当以优化的时间和浓度施用ABA时,这些过程有助于更快恢复并维持关键产量构成要素,如穗数和粒重。虽然大规模施用ABA存在挑战,但本研究为模仿ABA效应的育种和农艺策略提供了框架,为提高大麦的耐旱性和产量稳定性提供了一条切实可行的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff5a/11977895/d3677ad08c58/12870_2025_6485_Fig1_HTML.jpg

相似文献

1
ABA-induced alternative splicing drives transcriptomic reprogramming for drought tolerance in barley.
BMC Plant Biol. 2025 Apr 8;25(1):445. doi: 10.1186/s12870-025-06485-y.
2
The alternative splicing of HvLHCA4.2 enhances drought tolerance in barley by regulating ROS scavenging and stomatal closure.
Int J Biol Macromol. 2025 May;307(Pt 4):142384. doi: 10.1016/j.ijbiomac.2025.142384. Epub 2025 Mar 20.
4
SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato.
J Exp Bot. 2012 Sep;63(15):5593-606. doi: 10.1093/jxb/ers220. Epub 2012 Aug 21.
7
Alternative Splicing Events and ABA Hormone Regulation in Drought Response of L.
Genes (Basel). 2025 Mar 18;16(3):350. doi: 10.3390/genes16030350.
8
Barley () Is Involved in Abscisic Acid-Dependent Drought Response.
Front Plant Sci. 2020 Jul 29;11:1138. doi: 10.3389/fpls.2020.01138. eCollection 2020.
9
ABA signaling rather than ABA metabolism is involved in trehalose-induced drought tolerance in tomato plants.
Planta. 2019 Aug;250(2):643-655. doi: 10.1007/s00425-019-03195-2. Epub 2019 May 29.

本文引用的文献

1
Update on stomata development and action under abiotic stress.
Front Plant Sci. 2023 Oct 2;14:1270180. doi: 10.3389/fpls.2023.1270180. eCollection 2023.
2
Suppression of SlDREB3 increases leaf ABA responses and promotes drought tolerance in transgenic tomato plants.
Biochem Biophys Res Commun. 2023 Nov 12;681:136-143. doi: 10.1016/j.bbrc.2023.09.066. Epub 2023 Sep 24.
3
Signaling Transduction of ABA, ROS, and Ca in Plant Stomatal Closure in Response to Drought.
Int J Mol Sci. 2022 Nov 26;23(23):14824. doi: 10.3390/ijms232314824.
4
Abscisic acid and its role in the modulation of plant growth, development, and yield stability.
Trends Plant Sci. 2022 Dec;27(12):1283-1295. doi: 10.1016/j.tplants.2022.08.013. Epub 2022 Sep 10.
5
BaRTv2: a highly resolved barley reference transcriptome for accurate transcript-specific RNA-seq quantification.
Plant J. 2022 Aug;111(4):1183-1202. doi: 10.1111/tpj.15871. Epub 2022 Jul 19.
6
Improving crop drought resistance with plant growth regulators and rhizobacteria: Mechanisms, applications, and perspectives.
Plant Commun. 2021 Aug 4;3(1):100228. doi: 10.1016/j.xplc.2021.100228. eCollection 2022 Jan 10.
7
Role of Basal ABA in Plant Growth and Development.
Genes (Basel). 2021 Nov 30;12(12):1936. doi: 10.3390/genes12121936.
8
Priming crops for the future: rewiring stress memory.
Trends Plant Sci. 2022 Jul;27(7):699-716. doi: 10.1016/j.tplants.2021.11.015. Epub 2021 Dec 11.
9
Loss-of-function of ARABIDOPSIS F-BOX PROTEIN HYPERSENSITIVE TO ABA 1 enhances drought tolerance and delays germination.
Physiol Plant. 2021 Dec;173(4):2376-2389. doi: 10.1111/ppl.13588. Epub 2021 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验