Suppr超能文献

大语言模型能否促进护理流程在临床环境中的有效实施?

Can large language models facilitate the effective implementation of nursing processes in clinical settings?

作者信息

Cao Yuqin, Hu Li, Cao Xu, Peng Jingjing

机构信息

Nursing Department, Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.

Chong Qing Wondertek Software Corporation, Room 2, 10th Floor, Building C, Qilin, Huangshan Avenue Middle Section, Yubei District, Chongqing, 401121, People's Republic of China.

出版信息

BMC Nurs. 2025 Apr 8;24(1):394. doi: 10.1186/s12912-025-03010-2.

Abstract

BACKGROUND

The quality of generative nursing diagnoses and plans reported in existing research remains a topic of debate, and previous studies have primarily utilized ChatGPT as the sole large language mode.

PURPOSE

To explore the quality of nursing diagnoses and plans generated by a prompt framework across different large language models (LLMs) and assess the potential applicability of LLMs in clinical settings.

METHODS

We designed a structured nursing assessment template and iteratively developed a prompt framework incorporating various prompting techniques. We then evaluated the quality of nursing diagnoses and care plans generated by this framework across two distinct LLMs(ERNIE Bot 4.0 and Moonshot AI), while also assessing their clinical utility.

RESULTS

The scope and nature of the nursing diagnoses generated by ERNIE Bot 4.0 and Moonshot AI were similar to the "gold standard" nursing diagnoses and care plans.The structured assessment template effectively and comprehensively captures the key characteristics of neurosurgical patients, while the strategic use of prompting techniques has enhanced the generalization capabilities of the LLMs.

CONCLUSION

Our research further confirms the potential of LLMs in clinical nursing practice.However, significant challenges remain in the effective integration of LLM-assisted nursing processes into clinical environments.

摘要

背景

现有研究中报告的生成性护理诊断和计划的质量仍是一个有争议的话题,并且先前的研究主要将ChatGPT用作唯一的大语言模型。

目的

探讨通过一个提示框架在不同大语言模型(LLM)中生成的护理诊断和计划的质量,并评估大语言模型在临床环境中的潜在适用性。

方法

我们设计了一个结构化护理评估模板,并迭代开发了一个包含各种提示技术的提示框架。然后,我们评估了该框架在两个不同的大语言模型(文心一言4.0和幻月AI)中生成的护理诊断和护理计划的质量,同时还评估了它们的临床实用性。

结果

文心一言4.0和幻月AI生成的护理诊断的范围和性质与“金标准”护理诊断和护理计划相似。结构化评估模板有效且全面地捕捉了神经外科患者的关键特征,而提示技术的策略性使用增强了大语言模型的泛化能力。

结论

我们的研究进一步证实了大语言模型在临床护理实践中的潜力。然而,将大语言模型辅助的护理流程有效整合到临床环境中仍存在重大挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/386c/11980118/d845aaf9b3d8/12912_2025_3010_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验