Wang Jiaxin, Renninger Heidi J
Department of Forestry, Mississippi State University, Mississippi State, MS, 39762, USA.
New Phytol. 2025 Jun;246(5):2324-2345. doi: 10.1111/nph.70107. Epub 2025 Apr 8.
Sap flow, a critical process in plant water use and ecosystem water cycles, is often measured using thermal dissipation probes (TDP) due to their ease of installation and continuous data collection. However, sap flow data frequently include noise, outliers, and gaps, creating challenges for analysis and requiring substantial manual processing. We developed SapFlower, a tool that automates data preprocessing, model training, gap-filling, sapwood area scaling and modeling, and water use analysis. It integrates autocleaning, machine learning and deep learning models (e.g. random forest, Gaussian process regression, long short-term memory (LSTM), bidirectional LSTM (BiLSTM)), and efficient workflows to process sap flow data. SapFlower can remove over 90% of noisy data while preserving legitimate variations and achieve high accuracy in gap-filling based on user-determined parameters. Random forest, LSTM, and BiLSTM models reduced root mean square error to 10% or less for long-term gaps. Model training and prediction can be performed efficiently within seconds. SapFlower significantly enhances the efficiency and accessibility of TDP data analysis by automating complex tasks, enabling researchers without programming expertise to employ advanced techniques. Future improvements will focus on species-specific corrections for TDP and support for additional measurement methods. SapFlower is openly available on GitHub (https://github.com/JiaxinWang123/SapFlower) and Zenodo (doi: 10.5281/zenodo.13665919).
液流是植物水分利用和生态系统水循环中的一个关键过程,由于热消散探针(TDP)易于安装且能持续收集数据,因此常被用于测量液流。然而,液流数据经常包含噪声、异常值和缺口,这给分析带来了挑战,需要大量的人工处理。我们开发了SapFlower工具,它能自动进行数据预处理、模型训练、缺口填充、边材面积缩放与建模以及水分利用分析。它集成了自动清理、机器学习和深度学习模型(如随机森林、高斯过程回归、长短期记忆网络(LSTM)、双向长短期记忆网络(BiLSTM))以及高效的工作流程来处理液流数据。SapFlower可以去除90%以上的噪声数据,同时保留合理的变化,并根据用户确定的参数在缺口填充方面实现高精度。对于长期缺口,随机森林、LSTM和BiLSTM模型将均方根误差降低到10%或更低。模型训练和预测可以在几秒钟内高效完成。SapFlower通过自动化复杂任务显著提高了TDP数据分析的效率和可及性,使没有编程专业知识的研究人员也能采用先进技术。未来的改进将集中在针对TDP的物种特异性校正以及对其他测量方法的支持上。SapFlower可在GitHub(https://github.com/JiaxinWang123/SapFlower)和Zenodo(doi: 10.5281/zenodo.13665919)上公开获取。