Suppr超能文献

海洋细菌Flavimarina sp. Hel_I_48中多模块木聚糖分解碳水化合物酯酶的生化特性

Biochemical Characterization of Multimodular Xylanolytic Carbohydrate Esterases from the Marine Bacterium Flavimarina sp. Hel_I_48.

作者信息

Teune Michelle, Döhler Thorben, Bartosik Daniel, Schweder Thomas, Bornscheuer Uwe T

机构信息

Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany.

Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489, Greifswald, Germany.

出版信息

Chembiochem. 2025 Jul 11;26(13):e202500058. doi: 10.1002/cbic.202500058. Epub 2025 Apr 8.

Abstract

Carbohydrate-active enzymes (CAZymes) are critical for sustainable biomass utilization due to their ability to degrade complex polysaccharides. Frequently, a multimodularity can be observed combining several CAZyme domains and activities in close proximity which can benefit this degradation process. In this study, three multimodular xylanolytic carbohydrate esterases (CEs), named Fl6, Fll1, and Fll4, originating from Flavimarina sp. Hel_I_48 that represent a novel arrangement of catalytic and/or binding domains, are investigated. While Fl6 acts as a glucuronyl esterase, it also contains a carbohydrate binding module which is normally associated with xylanase activity. Fll1 combines xylosidase with acetylxylan esterase (AXE) activity mediated by a CE3 domain. The third enzyme, Fll4, is the first enzyme that comprises three distinct CE domains and shows bifunctional activity as an AXE and a feruloyl esterase (FAE). Investigation of the single domains reveals that the CE6 domain of Fll4 mediates its AXE activity while one of the putative CE1 domains, CE1a, mediates the FAE activity. This investigation of multimodularity of marine CAZymes not only enhances our understanding of these enzymes but may provide a promising route toward more efficient algal biomass utilization for biotechnological applications.

摘要

碳水化合物活性酶(CAZymes)因其降解复杂多糖的能力,对于可持续生物质利用至关重要。通常,可以观察到多模块性,即几个CAZyme结构域和活性紧密结合在一起,这有利于降解过程。在本研究中,对源自海黄杆菌属Hel_I_48的三种多模块木聚糖分解碳水化合物酯酶(CEs),即Fl6、Fll1和Fll4进行了研究,它们代表了催化和/或结合结构域的一种新排列。虽然Fl6作为葡糖醛酸酯酶发挥作用,但它还含有一个通常与木聚糖酶活性相关的碳水化合物结合模块。Fll1将木糖苷酶与由CE3结构域介导的乙酰木聚糖酯酶(AXE)活性结合在一起。第三种酶Fll4是第一种包含三个不同CE结构域的酶,具有作为AXE和阿魏酸酯酶(FAE)的双功能活性。对单个结构域的研究表明,Fll4的CE6结构域介导其AXE活性,而推定的CE1结构域之一CE1a介导FAE活性。对海洋CAZymes多模块性的这项研究不仅增进了我们对这些酶的理解,而且可能为生物技术应用中更高效地利用藻类生物质提供一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b74/12247016/7929147dfa4b/CBIC-26-e202500058-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验