Hayati Memi Nor, Wahyuningsih Sri, Kamaruddin Iriyani, Dani Andrea Tri Rian, Goejantoro Rito, Yuniarti Desi, Amijaya Fidia Deny Tisna, Purnamasari Ika, Siringoringo Meiliyani, Prangga Surya, Kusuma Ratna, Munir Rahmawati
Department of Mathematics, Faculty of Mathematics and Natural Sciences, Mulawarman University, Indonesia.
Department of Public Health, Faculty of Public Health, Mulawarman University, Samarinda, Indonesia.
MethodsX. 2025 Mar 9;14:103258. doi: 10.1016/j.mex.2025.103258. eCollection 2025 Jun.
We introduce a new multi-predictor regression model based on the Poisson distribution using a local linear approach called the local linear multi-predictor Poisson regression. The optimal bandwidth in this study was selected based on the maximum likelihood cross-validation (MLCV) value. The locally kernel-weighted maximum likelihood estimator is used to estimate the regression curve at a given point. Parameter estimation was performed using the Newton-Raphson iteration method. The superior points in this research are:•A new model in regression to model multi-predictor case Poisson regression problems using a local liner approach•Optimal bandwidth selection using MCLV•Application of multi predictor case Poisson regression problems using a local liner approach to health data; namely the stunting case in East Kalimantan.
我们引入了一种基于泊松分布的新多预测变量回归模型,使用一种称为局部线性多预测变量泊松回归的局部线性方法。本研究中的最优带宽是根据最大似然交叉验证(MLCV)值选择的。局部核加权最大似然估计器用于估计给定点处的回归曲线。参数估计采用牛顿-拉夫逊迭代法。本研究的优点包括:•一种用于对多预测变量情况的泊松回归问题进行建模的回归新模型,采用局部线性方法;•使用MCLV进行最优带宽选择;•将采用局部线性方法的多预测变量情况的泊松回归问题应用于健康数据,即东加里曼丹的发育迟缓情况。