Suppr超能文献

电化学流动反应器:传质、iR降及无膜在线分析性能

Electrochemical Flow Reactors: Mass Transport, iR Drop, and Membrane-Free Performance with In-Line Analysis.

作者信息

Klement W J Niels, Savino Elia, Rooijmans Sarah, Mulder Patty P M F A, Lynn N Scott, Browne Wesley R, Verpoorte Elisabeth

机构信息

Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 3, 9474AG Groningen, The Netherlands.

Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.

出版信息

ACS Electrochem. 2025 Jan 14;1(4):504-515. doi: 10.1021/acselectrochem.4c00167. eCollection 2025 Apr 3.

Abstract

Continuous flow reactors are promising for electrochemical conversions, in large part due to the potentially rapid refreshment of reagents over the electrode surface. Microfluidic reactors enable a high degree of control over the fluid flow. Diffusion to and from the electrode and electrode area determine the efficiency of electrochemical conversion. The effective electrode area is limited by the loss in electrode potential due to iR drop, and further electrode length (and hence area) is limited due to ineffective mass transport to and from the electrode. Here, we report on a microfluidic electrochemical device with large (long) area electrodes running in parallel, which both minimizes the iR drop and ensures a constant electrode potential along the whole length of the electrodes. The electrodes are separated by laminar flow in the channels, instead of by a membrane, thereby reducing cell resistance. Herringbone grooves are used to increase mass transport rates by inducing transverse flow. We confirm fluid flow behavior in the devices using computational fluid dynamics (CFD) and verify the results experimentally using in-line and off-line UV/vis absorption and resonance Raman spectroscopy. We anticipate that this approach will aid future development of electrochemical flow reactors, enabling larger area-electrodes and realizing greater efficiencies.

摘要

连续流动反应器在电化学转化方面颇具前景,这在很大程度上归因于试剂在电极表面可能实现的快速更新。微流体反应器能够对流体流动进行高度控制。电极与电极区域之间的扩散决定了电化学转化的效率。有效电极面积受到因iR降导致的电极电位损失的限制,而且由于往返电极的传质效率低下,进一步限制了电极长度(进而限制了面积)。在此,我们报道了一种具有大面积(长)平行运行电极的微流体电化学装置,该装置既能将iR降降至最低,又能确保沿电极全长的电极电位恒定。电极在通道中通过层流隔开,而非通过膜,从而降低了电池电阻。人字形凹槽用于通过诱导横向流动来提高传质速率。我们使用计算流体动力学(CFD)确认了装置中的流体流动行为,并通过在线和离线紫外/可见吸收光谱以及共振拉曼光谱对结果进行了实验验证。我们预计这种方法将有助于电化学流动反应器的未来发展,实现更大面积的电极并提高效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a256/11973871/d5b8a4fd264f/ec4c00167_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验