Becher Matthias, Hothorn Ludwig A, Konietschke Frank
Institut für Biometrie und klinische Epidemiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Leibniz University Hannover, Hannover, Germany.
Stat Med. 2025 Mar 30;44(7):e70018. doi: 10.1002/sim.70018.
A common goal in clinical trials is to conduct tests on estimated treatment effects adjusted for covariates such as age or sex. Analysis of Covariance (ANCOVA) is often used in these scenarios to test the global null hypothesis of no treatment effect using an -test. However, in several samples, the -test does not provide any information about individual null hypotheses and has strict assumptions such as variance homoscedasticity. We extend the method proposed by Konietschke et al. ["Analysis of Covariance Under Variance Heteroscedasticity in General Factorial Designs," Statistics in Medicine 40 (2021): 4732-4749] to a multiple contrast test procedure (MCTP), which allows us to test arbitrary linear hypotheses and provides information about the global- as well as the individual null hypotheses. Further, we can calculate compatible simultaneous confidence intervals for the individual effects. We derive a small sample size approximation of the distribution of the test statistic via a multivariate t-distribution. As an alternative, we introduce a Wild-bootstrap method. Extensive simulations show that our methods are applicable even when sample sizes are small. Their application is further illustrated within a real data example.
临床试验中的一个常见目标是对针对年龄或性别等协变量调整后的估计治疗效果进行检验。协方差分析(ANCOVA)在这些情况下经常被用于使用F检验来检验无治疗效果的全局原假设。然而,在多个样本中,F检验无法提供关于各个原假设的任何信息,并且有诸如方差齐性等严格假设。我们将Konietschke等人提出的方法[《一般析因设计中方差异方差下的协方差分析》,《医学统计学》40(2021):4732 - 4749]扩展为一种多重对比检验程序(MCTP),它使我们能够检验任意线性假设,并提供关于全局以及各个原假设的信息。此外,我们可以计算各个效应的相容同时置信区间。我们通过多元t分布推导检验统计量分布的小样本量近似值。作为一种替代方法,我们引入了野生自助法。大量模拟表明,即使样本量较小,我们的方法也适用。在一个实际数据示例中进一步说明了它们的应用。