通过街景图像和机器学习改善大学校园以学生为中心的步行环境。
Enhancing student-centered walking environments on university campuses through street view imagery and machine learning.
作者信息
Qin Yi, Wu Xue, Yu Tengfei, Jiang Shuai
机构信息
Department of Art and Craft, Xi'an Academy of Fine Arts, Xi'an, China.
Department of Arts, School of Humanities and Social Sciences, Xi'an Jiaotong University, Xi'an, China.
出版信息
PLoS One. 2025 Apr 9;20(4):e0321028. doi: 10.1371/journal.pone.0321028. eCollection 2025.
Campus walking environments significantly influence college students' daily lives and shape their subjective perceptions. However, previous studies have been constrained by limited sample sizes and inefficient, time-consuming methodologies. To address these limitations, we developed a deep learning framework to evaluate campus walking perceptions across four universities in China's Yangtze River Delta region. Utilizing 15,596 Baidu Street View Images (BSVIs), and perceptual ratings from 100 volunteers across four dimensions-aesthetics, security, depression, and vitality-we employed four machine learning models to predict perceptual scores. Our results demonstrate that the Random Forest (RF) model outperformed others in predicting aesthetics, security, and vitality, while linear regression was most effective for depression. Spatial analysis revealed that perceptions of aesthetics, security, and vitality were concentrated in landmark areas and regions with high pedestrian flow. Multiple linear regression analysis indicated that buildings exhibited stronger correlations with depression (β = 0.112) compared to other perceptual aspects. Moreover, vegetation (β = 0.032) and meadows (β = 0.176) elements significantly enhanced aesthetics. This study offers actionable insights for optimizing campus walking environments from a student-centered perspective, emphasizing the importance of spatial design and visual elements in enhancing students' perceptual experiences.
校园步行环境对大学生的日常生活有着显著影响,并塑造着他们的主观认知。然而,以往的研究受到样本量有限以及低效、耗时的方法的限制。为了解决这些局限性,我们开发了一个深度学习框架,以评估中国长江三角洲地区四所大学的校园步行感知。利用15596张百度街景图像(BSVI)以及来自100名志愿者在美学、安全性、压抑感和活力四个维度上的感知评分,我们采用了四种机器学习模型来预测感知分数。我们的结果表明,随机森林(RF)模型在预测美学、安全性和活力方面优于其他模型,而线性回归在预测压抑感方面最为有效。空间分析显示,美学、安全性和活力的感知集中在地标区域和行人流量大的区域。多元线性回归分析表明,与其他感知方面相比,建筑与压抑感的相关性更强(β = 0.112)。此外,植被(β = 0.032)和草地(β = 0.176)元素显著提升了美学效果。本研究从以学生为中心的角度为优化校园步行环境提供了可行的见解,强调了空间设计和视觉元素在提升学生感知体验方面的重要性。