Suppr超能文献

一种基于双图卷积网络和正/负特征增强网络的知识追踪方法。

A knowledge tracing approach with dual graph convolutional networks and positive/negative feature enhancement network.

作者信息

Wang Jianjun, Tang Qianjun, Zheng Zongliang

机构信息

School of Fine Arts and Design, Leshan Normal University, Leshan, Sichuan, China.

School of Education Science, Leshan Normal University, Leshan, Sichuan, China.

出版信息

PLoS One. 2025 Apr 9;20(4):e0317992. doi: 10.1371/journal.pone.0317992. eCollection 2025.

Abstract

Knowledge tracing models predict students' mastery of specific knowledge points by analyzing their historical learning performance. However, existing methods struggle with handling a large number of skills, data sparsity, learning differences, and complex skill correlations. To address these issues, we propose a knowledge tracing method based on dual graph convolutional networks and positive/negative feature enhancement. We construct dual graph structures with students and skills as nodes, respectively. The dual graph convolutional networks independently process the student and skill graphs, effectively resolving data sparsity and skill correlation challenges. By integrating positive/negative feature enhancement and spectral embedding clustering optimization modules, the model efficiently combines student and skill features, overcoming variations in learning performance. Experimental results on public datasets demonstrate that our proposed method outperforms existing approaches, showcasing significant advantages in handling complex learning data. This method provides new directions for educational data mining and personalized learning through innovative graph learning models and feature enhancement techniques.

摘要

知识追踪模型通过分析学生的历史学习表现来预测他们对特定知识点的掌握程度。然而,现有方法在处理大量技能、数据稀疏性、学习差异以及复杂的技能相关性方面存在困难。为了解决这些问题,我们提出了一种基于双图卷积网络和正/负特征增强的知识追踪方法。我们分别以学生和技能为节点构建双图结构。双图卷积网络独立处理学生图和技能图,有效解决数据稀疏性和技能相关性挑战。通过集成正/负特征增强和谱嵌入聚类优化模块,该模型有效地结合了学生和技能特征,克服了学习表现的差异。在公共数据集上的实验结果表明,我们提出的方法优于现有方法,在处理复杂学习数据方面展现出显著优势。该方法通过创新的图学习模型和特征增强技术为教育数据挖掘和个性化学习提供了新的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79e6/11981649/10c084be43de/pone.0317992.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验