Kwun Ju-Seung, Ahn Houng-Beom, Kang Si-Hyuck, Yoo Sooyoung, Kim Seok, Song Wongeun, Hyun Junho, Oh Ji Seon, Baek Gakyoung, Suh Jung-Won
Cardiovascular Center, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea.
Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
J Med Internet Res. 2025 Apr 9;27:e66366. doi: 10.2196/66366.
Considering that most patients with low or no significant risk factors can safely undergo noncardiac surgery without additional cardiac evaluation, and given the excessive evaluations often performed in patients undergoing intermediate or higher risk noncardiac surgeries, practical preoperative risk assessment tools are essential to reduce unnecessary delays for urgent outpatient services and manage medical costs more efficiently.
This study aimed to use the Observational Medical Outcomes Partnership Common Data Model to develop a predictive model by applying machine learning algorithms that can effectively predict major adverse cardiac and cerebrovascular events (MACCE) in patients undergoing noncardiac surgery.
This retrospective observational network study collected data by converting electronic health records into a standardized Observational Medical Outcomes Partnership Common Data Model format. The study was conducted in 2 tertiary hospitals. Data included demographic information, diagnoses, laboratory results, medications, surgical types, and clinical outcomes. A total of 46,225 patients were recruited from Seoul National University Bundang Hospital and 396,424 from Asan Medical Center. We selected patients aged 65 years and older undergoing noncardiac surgeries, excluding cardiac or emergency surgeries, and those with less than 30 days of observation. Using these observational health care data, we developed machine learning-based prediction models using the observational health data sciences and informatics open-source patient-level prediction package in R (version 4.1.0; R Foundation for Statistical Computing). A total of 5 machine learning algorithms, including random forest, were developed and validated internally and externally, with performance assessed through the area under the receiver operating characteristic curve (AUROC), the area under the precision-recall curve, and calibration plots.
All machine learning prediction models surpassed the Revised Cardiac Risk Index in MACCE prediction performance (AUROC=0.704). Random forest showed the best results, achieving AUROC values of 0.897 (95% CI 0.883-0.911) internally and 0.817 (95% CI 0.815-0.819) externally, with an area under the precision-recall curve of 0.095. Among 46,225 patients of the Seoul National University Bundang Hospital, MACCE occurred in 4.9% (2256/46,225), including myocardial infarction (907/46,225, 2%) and stroke (799/46,225, 1.7%), while in-hospital mortality was 0.9% (419/46,225). For Asan Medical Center, 6.3% (24,861/396,424) of patients experienced MACCE, with 1.5% (6017/396,424) stroke and 3% (11,875/396,424) in-hospital mortality. Furthermore, the significance of predictors linked to previous diagnoses and laboratory measurements underscored their critical role in effectively predicting perioperative risk.
Our prediction models outperformed the widely used Revised Cardiac Risk Index in predicting MACCE within 30 days after noncardiac surgery, demonstrating superior calibration and generalizability across institutions. Its use can optimize preoperative evaluations, minimize unnecessary testing, and streamline perioperative care, significantly improving patient outcomes and resource use. We anticipate that applying this model to actual electronic health records will benefit clinical practice.
鉴于大多数低风险或无显著风险因素的患者可以安全地接受非心脏手术,无需额外的心脏评估,并且考虑到接受中、高风险非心脏手术的患者常常接受过度评估,实用的术前风险评估工具对于减少紧急门诊服务的不必要延误以及更有效地管理医疗成本至关重要。
本研究旨在使用观察性医疗结局合作组织通用数据模型,通过应用机器学习算法开发一种预测模型,以有效预测接受非心脏手术患者的主要不良心脑血管事件(MACCE)。
这项回顾性观察性网络研究通过将电子健康记录转换为标准化的观察性医疗结局合作组织通用数据模型格式来收集数据。该研究在两家三级医院进行。数据包括人口统计学信息、诊断、实验室检查结果、用药情况、手术类型和临床结局。从首尔国立大学盆唐医院招募了46225例患者,从峨山医院招募了396424例患者。我们选择了年龄在65岁及以上接受非心脏手术的患者,排除心脏手术或急诊手术患者以及观察期少于30天的患者。利用这些观察性医疗保健数据,我们使用R语言(版本4.1.0;R统计计算基础)中的观察性健康数据科学和信息学开源患者水平预测软件包,开发了基于机器学习的预测模型。共开发了包括随机森林在内的5种机器学习算法,并在内部和外部进行了验证,通过受试者工作特征曲线下面积(AUROC)、精确召回率曲线下面积和校准图评估性能。
所有机器学习预测模型在MACCE预测性能方面均超过了修订的心脏风险指数(AUROC = 0.704)。随机森林表现最佳,内部AUROC值为0.897(95%CI 0.883 - 0.911),外部为0.817(95%CI 0.815 - 0.819),精确召回率曲线下面积为0.095。在首尔国立大学盆唐医院的46225例患者中,4.9%(2256/46225)发生了MACCE,包括心肌梗死(907/46225,2%)和中风(799/46225,1.7%),住院死亡率为0.9%(419/46225)。对于峨山医院,6.3%(24861/396424)的患者发生了MACCE,其中1.5%(6017/396424)为中风,3%(11875/396424)为住院死亡率。此外,与既往诊断和实验室测量相关的预测因素的重要性强调了它们在有效预测围手术期风险中的关键作用。
我们的预测模型在预测非心脏手术后30天内的MACCE方面优于广泛使用的修订心脏风险指数,在各机构间显示出更好的校准和可推广性。其应用可以优化术前评估,减少不必要的检查,并简化围手术期护理,显著改善患者结局和资源利用。我们预计将该模型应用于实际电子健康记录将有益于临床实践。