Suppr超能文献

基于U-Net的经颅磁刺激电场估计的综合评估。

Comprehensive evaluation of U-Net based transcranial magnetic stimulation electric field estimations.

作者信息

Berger Taylor A, Mantell Kathleen, Haigh Zachary, Perera Nipun, Alekseichuk Ivan, Opitz Alexander

机构信息

Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.

Stephen M. Stahl Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.

出版信息

Sci Rep. 2025 Apr 9;15(1):12204. doi: 10.1038/s41598-025-95767-4.

Abstract

Transcranial Magnetic Stimulation (TMS) is a non-invasive method to modulate neural activity by inducing an electric field in the human brain. Computational models are an important tool for informing TMS targeting and dosing. State-of-the-art modeling techniques use numerical methods, such as the finite element method (FEM), to produce highly accurate simulation results. However, these methods operate at a high computational cost, limiting real-time integration and high throughput applications. Deep learning (DL) methods, particularly U-Nets, are being investigated for TMS electric field estimations. However, their performance across large datasets and whole-head stimulation conditions has not been systematically evaluated. Here, we develop a DL framework to estimate TMS-induced electric fields directly from an anatomical magnetic resonance image (MRI) and TMS coil parameters. We perform a comprehensive evaluation of the performance of our U-Net approach compared to the FEM gold standard. We selected a dataset of 100 MRI scans from a diverse population demographic (ethnic, gender, age) made available by the Human Connectome Project. For each MRI, we generated a FEM head model and simulated the electric fields for 13 TMS coil orientations and 1206 positions (a total of 15,678 coil configurations per participant). We trained a modified U-Net architecture to predict individual TMS-induced electric fields in the brain based on an input T1-weighted MRI scan and stimulation parameters. We characterized the model's performance according to computational efficiency and simulation accuracy compared to FEM using an independent testing dataset. The U-Net results demonstrated an accelerated electric field modeling speed at 0.8 s per simulation (×97,000 times acceleration over the FEM-based approach). Sampling stimulation conditions across the whole brain yielded an average DICE coefficient of 0.71 ± 0.06 mm and an average center of gravity deviation of 7.52 ± 4.06 mm from the FEM-based approach. Our findings indicate that while deep learning has the potential to significantly accelerate electric field predictions, the precision it achieves needs to be evaluated for the specific TMS application.

摘要

经颅磁刺激(TMS)是一种通过在人脑中诱导电场来调节神经活动的非侵入性方法。计算模型是指导TMS靶向和剂量确定的重要工具。最先进的建模技术使用数值方法,如有限元法(FEM),以产生高度准确的模拟结果。然而,这些方法的计算成本很高,限制了实时集成和高通量应用。正在研究深度学习(DL)方法,特别是U-Net,用于TMS电场估计。然而,它们在大型数据集和全脑刺激条件下的性能尚未得到系统评估。在这里,我们开发了一个DL框架,可直接根据解剖磁共振图像(MRI)和TMS线圈参数估计TMS诱导的电场。与FEM金标准相比,我们对U-Net方法的性能进行了全面评估。我们从人类连接体项目提供的不同人群(种族、性别、年龄)中选择了100份MRI扫描数据集。对于每个MRI,我们生成了一个FEM头部模型,并模拟了13种TMS线圈方向和1206个位置的电场(每位参与者共有15678种线圈配置)。我们训练了一种改进的U-Net架构,以根据输入的T1加权MRI扫描和刺激参数预测大脑中个体TMS诱导的电场。与使用独立测试数据集的FEM相比,我们根据计算效率和模拟准确性对模型的性能进行了表征。U-Net结果表明,电场建模速度加快,每次模拟为0.8秒(比基于FEM的方法快97000倍)。在全脑范围内采样刺激条件,平均DICE系数为0.71±0.06毫米,与基于FEM的方法相比,平均重心偏差为7.52±4.06毫米。我们的研究结果表明,虽然深度学习有可能显著加速电场预测,但对于特定的TMS应用,需要评估其实现的精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b0/11982342/cbb14013f824/41598_2025_95767_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验