Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA.
Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Department of Psychology, University of Georgia, Athens, GA, USA.
Brain Stimul. 2022 Sep-Oct;15(5):1192-1205. doi: 10.1016/j.brs.2022.08.013. Epub 2022 Aug 27.
Researchers and clinicians have traditionally relied on elastic caps with markings to reposition the transcranial magnetic stimulation (TMS) coil between trains and sessions. Newer neuronavigation technology co-registers the patient's head and structural magnetic resonance imaging (MRI) scan, providing the researcher with real-time feedback about how to adjust the coil to be on-target. However, there has been no head to head comparison of accuracy and precision across treatment sessions.
/Hypothesis: In this two-part study, we compared elastic cap and neuronavigation targeting methodologies on distance, angle, and electric field (E-field) magnitude values.
In 42 participants receiving up to 50 total accelerated rTMS sessions in 5 days, we compared cap and neuronavigation targeting approaches in 3408 distance and 6816 angle measurements. In Experiment 1, TMS administrators saved an on-target neuronavigation location at Beam F3, which served as the landmark for all other measurements. Next, the operators placed the TMS coil based on cap markings or neuronavigation software to measure the distance and angle differences from the on-target sample. In Experiment 2, we saved each XYZ coordinate of the TMS coil from cap and neuronavigation targeting in 12 participants to compare the E-field magnitude differences at the cortical prefrontal target in 1106 cap and neuronavigation models.
Cap targeting was significantly off-target for distance, placing the coil an average of 10.66 mm off-target (Standard error of the mean; SEM = 0.19 mm) compared to 0.3 mm (SEM = 0.03 mm) for neuronavigation (p < 0.0001). Cap targeting also significantly deviated for angles off-target, averaging 7.79 roll/pitch degrees (SEM = 1.07°) off-target and 5.99 yaw degrees (SEM = 0.12°) off-target; in comparison, neuronavigation targeting positioned the coil 0.34 roll/pitch degrees (SEM = 0.01°) and 0.22 yaw (SEM = 0.004°) off-target (both p < 0.0001). Further analyses revealed that there were significant inter-operator differences on distance and angle positioning for F3 (all p < 0.05), but not neuronavigation. Lastly, cap targeting resulted in significantly lower E-fields at the intended prefrontal cortical target, with equivalent E-fields as 110.7% motor threshold (MT; range = 58.3-127.4%) stimulation vs. 119.9% MT (range = 115-123.3%) from neuronavigated targeting with 120% MT stimulation applied (p < 0.001).
Cap-based targeting is an inherent source of target variability compared to neuronavigation. Additionally, cap-based coil placement is more prone to differences across operators. Off-target coil placement secondary to cap-based measurements results in significantly lower amounts of stimulation reaching the cortical target, with some individuals receiving only 48.6% of the intended on-target E-field. Neuronavigation technology enables more precise and accurate TMS positioning, resulting in the intended stimulation intensities at the targeted cortical level.
研究人员和临床医生传统上依赖带有标记的弹性帽在治疗过程和治疗之间重新定位经颅磁刺激(TMS)线圈。较新的神经导航技术可对患者的头部和结构磁共振成像(MRI)扫描进行配准,为研究人员提供有关如何调整线圈以达到目标的实时反馈。然而,在整个治疗过程中,还没有对准确性和精密度进行过直接比较。
假设:在这项两部分的研究中,我们比较了弹性帽和神经导航靶向方法在距离、角度和电场(E-field)幅度值上的差异。
在 42 名参与者在 5 天内接受最多 50 次加速 rTMS 治疗的过程中,我们在 3408 个距离和 6816 个角度测量中比较了帽和神经导航的靶向方法。在实验 1 中,TMS 管理员在 Beam F3 处保存了一个目标神经元导航位置,该位置作为所有其他测量的基准。然后,操作人员根据帽标记或神经导航软件放置 TMS 线圈,以测量从目标样本的距离和角度差异。在实验 2 中,我们在 12 名参与者中保存了来自帽和神经导航靶向的每个 TMS 线圈的 XYZ 坐标,以比较 1106 个帽和神经导航模型在皮质前额叶目标的 E-field 幅度差异。
与神经导航相比,帽靶向在距离上明显偏离目标,线圈平均偏离目标 10.66 毫米(均方误差;SEM=0.19 毫米),而神经导航的偏离目标为 0.3 毫米(SEM=0.03 毫米)(p<0.0001)。帽靶向在角度上也明显偏离目标,平均偏离目标 7.79 度(SEM=1.07°)和 5.99 度(SEM=0.12°);相比之下,神经导航靶向将线圈定位在 0.34 度(SEM=0.01°)和 0.22 度(SEM=0.004°)(均 p<0.0001)。进一步的分析显示,在 F3 上,距离和角度定位存在显著的操作者间差异(均 p<0.05),但神经导航不存在这种差异。最后,帽靶向导致预期的前额叶皮质目标的电场明显降低,其等效电场为 110.7%运动阈值(MT;范围=58.3-127.4%)刺激,而神经导航靶向以 119.9% MT(范围=115-123.3%)刺激应用 120% MT 刺激时的等效电场为 119.9%(p<0.001)。
与神经导航相比,基于帽的靶向是目标变异性的固有来源。此外,基于帽的线圈放置更容易受到操作人员之间的差异影响。由于基于帽的测量导致线圈偏离目标,导致到达皮质目标的刺激量显著减少,一些人仅接受了预期目标 E 场的 48.6%。神经导航技术可实现更精确和准确的 TMS 定位,从而达到目标皮质水平的预期刺激强度。