Qian Min, Li Danyang, Hao Zihan, Hu Shujuan, Li Weide
School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000, China.
College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China.
BMC Infect Dis. 2025 Apr 9;25(1):485. doi: 10.1186/s12879-025-10873-y.
BACKGROUND: Monkeypox (Mpox) is an emerging infectious disease caused by the Mpox virus (MPX Virus). The outbreak of Mpox epidemic has caused global panic and is now a public health incident. Various approaches have been proposed in the recent literature to study and analyze the epidemiological dynamics of this infection and effective prevention and control measures. Using mathematical model to understand the transmission dynamics and control strategy is a useful way to understand the prevention of Mpox. METHODS: A new compartment model is established to examine the effectiveness of vaccine on Mpox based on previous studies. Nonlinear least squares fitting is used for model's parameter estimation. The impact of a series of preventive and control measures on the epidemic control is explored with optimal control theory in conjunction with the official data released by the authorities. RESULTS: Firstly, a stability analysis of the developed model was carried out to show that, under certain circumstances, its equilibrium is both locally and globally stable. Secondly, based on the reported cases of Mpox infection in the United States between 2022 and 2023, the model's optimal parameter values were obtained. A sensitivity analysis of the model parameters was then conducted to identify the key parameters that affect the development of Mpox epidemics in the United States. Lastly, the comparison of control effects under various control strategies showed that implementing the all suggested four control measures at the same time was the most effective way to curb the development of monkeypox epidemic in the United States. CONCLUSIONS: This study has theoretical significance for understanding and controlling Mpox virus transmission.
背景:猴痘是由猴痘病毒引起的一种新兴传染病。猴痘疫情的爆发已引起全球恐慌,现已成为一起公共卫生事件。最近的文献中提出了各种方法来研究和分析这种感染的流行病学动态以及有效的预防和控制措施。使用数学模型来理解传播动态和控制策略是了解猴痘预防的一种有用方法。 方法:基于先前的研究建立了一个新的隔间模型,以检验疫苗对猴痘的有效性。使用非线性最小二乘法拟合进行模型的参数估计。结合当局发布的官方数据,运用最优控制理论探讨了一系列预防和控制措施对疫情控制的影响。 结果:首先,对所建立的模型进行稳定性分析,结果表明,在某些情况下,其平衡点在局部和全局都是稳定的。其次,根据2022年至2023年美国报告的猴痘感染病例,获得了模型的最优参数值。然后对模型参数进行敏感性分析,以确定影响美国猴痘疫情发展的关键参数。最后,各种控制策略下的控制效果比较表明,同时实施所有建议的四项控制措施是遏制美国猴痘疫情发展的最有效方法。 结论:本研究对理解和控制猴痘病毒传播具有理论意义。
BMC Infect Dis. 2025-4-9
Virulence. 2025-12
Int Immunopharmacol. 2025-1-27
Curr Opin Infect Dis. 2025-6-1
Microb Biotechnol. 2025-4
Infect Dis Model. 2024-5-21
Partial Differ Equ Appl Math. 2022-12
N Engl J Med. 2022-8-25
J Autoimmun. 2022-7