Allehiany F M, DarAssi Mahmoud H, Ahmad Irfan, Khan Muhammad Altaf, Tag-Eldin Elsayed M
Department of Mathematical Sciences, College of Applied Sciences, Umm Al-Qura University, Saudi Arabia.
Department of Basic Sciences, Princess Sumaya University for Technology, Amman 11941, Jordan.
Results Phys. 2023 Jul;50:106557. doi: 10.1016/j.rinp.2023.106557. Epub 2023 May 18.
We propose a mathematical model to analyze the monkeypox disease in the context of the known cases of the USA epidemic. We formulate the model and obtain their essential properties. The equilibrium points are found and their stability is demonstrated. We prove that the model is locally asymptotical stable (LAS) at disease free equilibrium (DFE) under . The presence of an endemic equilibrium is demonstrated, and the phenomena of backward bifurcation is discovered in the monkeypox disease model. In the monkeypox infectious disease model, the parameters that lead to backward bifurcation are , , and . When , we determine the model's global asymptotical stability (GAS). To parameterize the model using real data, we obtain the real value of the model parameters and compute . Additionally, we do a sensitivity analysis on the parameters in . We conclude by presenting specific numerical findings.
我们提出一个数学模型,以在美国疫情已知病例的背景下分析猴痘疾病。我们构建了该模型并获得了其基本性质。找到了平衡点并证明了其稳定性。我们证明该模型在无病平衡点(DFE)处,在[具体条件未给出]下是局部渐近稳定(LAS)的。证明了地方病平衡点的存在,并在猴痘疾病模型中发现了向后分岔现象。在猴痘传染病模型中,导致向后分岔的参数是[具体参数未给出]。当[具体条件未给出]时,我们确定了模型的全局渐近稳定性(GAS)。为了使用实际数据对模型进行参数化,我们获得了模型参数的实际值并计算了[具体计算内容未给出]。此外,我们对[具体参数范围未给出]中的参数进行了敏感性分析。最后我们给出了具体的数值结果。