Suppr超能文献

综合蛋白质组学与机器学习分析以区分不确定甲状腺结节中的滤泡性腺瘤和滤泡状甲状腺癌。

Comprehensive Proteomics and Machine Learning Analysis to Distinguish Follicular Adenoma and Follicular Thyroid Carcinoma from Indeterminate Thyroid Nodules.

作者信息

Ahn Hee-Sung, Song Eyun, Kim Chae A, Jeon Min Ji, Lee Yu-Mi, Sung Tea-Yon, Song Dong Eun, Yu Jiyoung, Shin Ji Min, Choi Yeon-Sook, Kim Kyunggon, Kim Won Gu

机构信息

Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.

AMC Sciences, Asan Medical Center, Seoul, Korea.

出版信息

Endocrinol Metab (Seoul). 2025 Aug;40(4):623-636. doi: 10.3803/EnM.2024.2208. Epub 2025 Apr 10.

Abstract

BACKGRUOUND

The preoperative diagnosis of follicular thyroid carcinoma (FTC) is challenging because it cannot be readily distinguished from follicular adenoma (FA) or benign follicular nodular disease (FND) using the sonographic and cytological features typically employed in clinical practice.

METHODS

We employed comprehensive proteomics and machine learning (ML) models to identify novel diagnostic biomarkers capable of classifying three subtypes: FTC, FA, and FND. Bottom-up proteomics techniques were applied to quantify proteins in formalin-fixed, paraffin-embedded (FFPE) thyroid tissues. In total, 202 FFPE tissue samples, comprising 62 FNDs, 72 FAs, and 68 FTCs, were analyzed.

RESULTS

Close spectrum-spectrum matching quantified 6,332 proteins, with approximately 9% (780 proteins) differentially expressed among the groups. When applying an ML model to the proteomics data from samples with preoperative indeterminate cytopathology (n=183), we identified distinct protein panels: five proteins (CNDP2, DNAAF5, DYNC1H1, FARSB, and PDCD4) for the FND prediction model, six proteins (DNAAF5, FAM149B1, RPS9, TAGLN2, UPF1, and UQCRC1) for the FA model, and seven proteins (ACTN4, DSTN, MACROH2A1, NUCB1, SPTAN1, TAGLN, and XRCC5) for the FTC model. The classifiers' performance, evaluated by the median area under the curve values of the random forest models, was 0.832 (95% confidence interval [CI], 0.824 to 0.839) for FND, 0.826 (95% CI, 0.817 to 0.835) for FA, and 0.870 (95% CI, 0.863 to 0.877) for FTC.

CONCLUSION

Quantitative proteome analysis combined with an ML model yielded an optimized multi-protein panel that can distinguish FTC from benign subtypes. Our findings indicate that a proteomic approach holds promise for the differential diagnosis of FTC.

摘要

背景

滤泡性甲状腺癌(FTC)的术前诊断具有挑战性,因为使用临床实践中常用的超声和细胞学特征无法轻易将其与滤泡性腺瘤(FA)或良性滤泡性结节病(FND)区分开来。

方法

我们采用综合蛋白质组学和机器学习(ML)模型来识别能够区分三种亚型的新型诊断生物标志物:FTC、FA和FND。采用自下而上的蛋白质组学技术对福尔马林固定、石蜡包埋(FFPE)的甲状腺组织中的蛋白质进行定量分析。总共分析了202个FFPE组织样本,包括62个FND、72个FA和68个FTC。

结果

紧密的谱图匹配定量了6332种蛋白质,各组之间约9%(780种蛋白质)差异表达。当将ML模型应用于术前细胞病理学不确定样本(n = 183)的蛋白质组学数据时,我们确定了不同的蛋白质组:用于FND预测模型的5种蛋白质(CNDP2、DNAAF5、DYNC1H1、FARSB和PDCD4),用于FA模型的6种蛋白质(DNAAF5、FAM149B1、RPS9、TAGLN2、UPF1和UQCRC1),以及用于FTC模型的7种蛋白质(ACTN4、DSTN、MACROH2A1、NUCB1、SPTAN1、TAGLN和XRCC5)。通过随机森林模型的曲线下面积值中位数评估分类器的性能,FND为0.832(95%置信区间[CI],0.824至0.839),FA为0.826(95%CI,0.817至0.835),FTC为0.870(95%CI,0.863至0.877)。

结论

定量蛋白质组分析与ML模型相结合产生了一个优化的多蛋白质组,可将FTC与良性亚型区分开来。我们的研究结果表明,蛋白质组学方法在FTC的鉴别诊断中具有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6dd/12409165/c45122306a56/enm-2024-2208f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验