Watanabe Masafumi, Salvadori Alice, Markovic Marica, Sudo Ryo, Ovsianikov Aleksandr
Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), 1060 Vienna, Austria.
Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Austria.
Mater Today Bio. 2025 Mar 7;32:101643. doi: 10.1016/j.mtbio.2025.101643. eCollection 2025 Jun.
There is a great demand for development of advanced liver models to predict the efficacy and safety of drug candidates accurately in the preclinical drug development. Despite the great efforts to develop biomimetic models, it remains challenging to precisely mimic a functional unit of the liver (i.e., hepatic lobule) with a continuous microvascular network. Recent progress in laser patterning has allowed us to create arbitrary biomimetic structures with high resolution. Here, we propose an advanced liver-on-chip model mimicking the hepatic lobule with a continuous microvascular network, ranging from the microvessels to the central vein of the liver, utilizing femtosecond laser patterning. Firstly, we optimize the laser power to pattern microchannels mimicking the microvessel and central vein of the hepatic lobule by using a femtosecond laser within a collagen-based hydrogel containing hepatic cells. Secondly, we construct continuous microvessels with luminal structures by comparing different microchannel sizes in diameter. Finally, we assemble a millimeter-scale hepatic lobule-like structure with multiple layers of microvascular networks in the liver-on-chip. Furthermore, our liver-on-chip model exhibits major liver functions and drug-induced hepatotoxicity, as evidenced by albumin and urea productions and by a toxic response to acetaminophen, respectively. Our approach provides valuable strategies for the development of advanced physiological and pathological liver-on-chip models for pharmaceutical and toxicological studies.
在临床前药物研发中,对先进肝脏模型的需求巨大,以便准确预测候选药物的疗效和安全性。尽管人们为开发生物模拟模型付出了巨大努力,但精确模拟具有连续微血管网络的肝脏功能单元(即肝小叶)仍然具有挑战性。激光图案化技术的最新进展使我们能够创建具有高分辨率的任意生物模拟结构。在此,我们提出一种先进的芯片上肝脏模型,利用飞秒激光图案化技术,模拟从微血管到肝脏中央静脉的具有连续微血管网络的肝小叶。首先,我们通过在含有肝细胞的基于胶原蛋白的水凝胶中使用飞秒激光,优化激光功率以对模拟肝小叶微血管和中央静脉的微通道进行图案化。其次,我们通过比较不同直径的微通道尺寸来构建具有管腔结构的连续微血管。最后,我们在芯片上肝脏中组装具有多层微血管网络的毫米级肝小叶样结构。此外,我们的芯片上肝脏模型分别通过白蛋白和尿素的产生以及对乙酰氨基酚的毒性反应,表现出主要的肝脏功能和药物诱导的肝毒性。我们的方法为开发用于药物和毒理学研究的先进生理和病理芯片上肝脏模型提供了有价值的策略。