Suppr超能文献

使用混合自动编码器方法对光学特性进行自动光谱分解和重建。

Automated spectral decomposition and reconstruction of optical properties using a mixed autoencoder approach.

作者信息

Ni Dongqin, Amouroux Marine, Blondel Walter, Hohmann Martin

机构信息

Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Photonic Technologies, Erlangen, Germany.

Erlangen Graduate School in Advanced Optical Technologies, Erlangen, Germany.

出版信息

J Biomed Opt. 2025 Apr;30(4):047001. doi: 10.1117/1.JBO.30.4.047001. Epub 2025 Apr 9.

Abstract

SIGNIFICANCE

Investigating optical properties (OPs) is crucial in the field of biophotonics, as it has a broad impact on understanding light-tissue interactions. However, current techniques, such as inverse Monte Carlo simulations (IMCS), have limitations in extracting detailed information about the spectral behavior of microscopic absorbers and scatterers.

AIM

We aim to develop a customized autoencoder neural network (ANN) that can automatically identify the spectral behavior of each microscopic absorber and scatterer responsible for generating OP.

APPROACH

The ANN is designed to compute OP from measurements, in which the bottleneck corresponds to the number of absorbers and scatterers. The presented ANN functions asymmetrically and computes the OP using a linear combination of absorbers and scatterers. Validation was conducted using intralipid as a scatterer and ink as an absorber.

RESULTS

The employment of the decoder weights facilitated the successful extraction of the spectral shape of every constituent, demonstrating the effectiveness of the ANN in extracting detailed information about the spectral behavior of absorbers and scatterers. At the same time, the OP can be predicted with high precision.

CONCLUSIONS

The presented ANN is a viable tool for extracting the spectral behavior of absorbers and scatterers without the need for prior knowledge of these components in the test and training data. Potential future applications could include the extraction of relative concentrations of constituents in tissue.

摘要

意义

研究光学特性(OPs)在生物光子学领域至关重要,因为它对理解光与组织的相互作用具有广泛影响。然而,当前的技术,如逆蒙特卡罗模拟(IMCS),在提取有关微观吸收体和散射体光谱行为的详细信息方面存在局限性。

目的

我们旨在开发一种定制的自动编码器神经网络(ANN),它能够自动识别每个负责产生OP的微观吸收体和散射体的光谱行为。

方法

该ANN被设计用于根据测量结果计算OP,其中瓶颈对应于吸收体和散射体的数量。所提出的ANN功能不对称,并使用吸收体和散射体的线性组合来计算OP。使用脂质乳剂作为散射体和墨水作为吸收体进行了验证。

结果

解码器权重的使用有助于成功提取每个成分的光谱形状,证明了ANN在提取有关吸收体和散射体光谱行为的详细信息方面的有效性。同时,可以高精度预测OP。

结论

所提出的ANN是一种可行的工具,用于提取吸收体和散射体的光谱行为,而无需在测试和训练数据中事先了解这些成分。未来潜在的应用可能包括提取组织中成分的相对浓度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3093/11981679/65cd50a0be27/JBO-030-047001-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验