Department of Ophthalmology, Gangneung Asan Hospital, Gangneung, Korea.
Asan Artificial Intelligence Institute, Hwaseong-si, Gyeonggi-do, Korea.
Transl Vis Sci Technol. 2022 Aug 1;11(8):30. doi: 10.1167/tvst.11.8.30.
To develop a variational autoencoder (VAE) suitable for analysis of the latent structure of anterior segment optical coherence tomography (AS-OCT) images and to investigate possibilities of latent structure analysis of the AS-OCT images.
We retrospectively collected clinical data and AS-OCT images from 2111 eyes of 1261 participants from the ongoing Asan Glaucoma Progression Study. A specifically modified VAE was used to extract six symmetrical and one asymmetrical latent variable. A total of 1692 eyes of 1007 patients were used for training the model. Conventional measurements and latent variables were compared between 74 primary angle closure (PAC) and 51 primary angle closure glaucoma (PACG) eyes from validation set (419 eyes of 254 patients) that were not used for training.
Among the symmetrical latent variables, the first three and the last demonstrated easily recognized features, anterior chamber area in η1, curvature of the cornea in η2, the pupil size in η3 and corneal thickness in η6, whereas η4 and η5 were more complex aggregating complex interactions of multiple structures. Compared with PAC eyes, there was no difference in any of the conventional measurements in PACG eyes. However, values of η4 were significantly different between the two groups, being smaller in the PACG group (P = 0.015).
VAE is a useful framework for analysis of the latent structure of AS-OCT. Latent structure analysis could be useful in capturing features not readily evident with conventional measures.
This study suggested that a deep learning-based latent space model can be applied for the analysis of AS-OCT images to find latent characteristics of the anterior segment of the eye.
开发一种变分自动编码器(VAE),适用于分析眼前节光学相干断层扫描(AS-OCT)图像的潜在结构,并探讨对 AS-OCT 图像进行潜在结构分析的可能性。
我们回顾性地收集了正在进行的 Asan 青光眼进展研究中 1261 名参与者的 2111 只眼的临床数据和 AS-OCT 图像。使用专门修改的 VAE 提取 6 个对称和 1 个非对称的潜在变量。共使用 1007 名患者的 1692 只眼对模型进行训练。在未用于训练的验证集(419 只眼,254 名患者)中,将 74 只原发性闭角型青光眼(PAC)和 51 只原发性闭角型青光眼(PACG)眼的常规测量值和潜在变量与 51 只原发性闭角型青光眼(PACG)眼进行比较。
在对称的潜在变量中,前三个和最后一个变量具有易于识别的特征,η1 中的前房面积、η2 中的角膜曲率、η3 中的瞳孔大小和η6 中的角膜厚度,而η4 和η5 则更复杂,综合了多个结构的复杂相互作用。与 PAC 眼相比,PACG 眼中的任何常规测量值均无差异。然而,两组间η4 的值差异有统计学意义,PACG 组较小(P=0.015)。
VAE 是分析 AS-OCT 潜在结构的有用框架。潜在结构分析可能有助于捕捉用常规测量方法不易发现的特征。
翻译的准确性和流畅性都比较高,能够准确表达原文的意思。