Liu Xiaoning, Zhang Zimeng, Cao Zhanshuo, Yuan Hongbo, Xing Chengfen
School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
Key Laboratory of Molecular Biophysics of Hebei Province, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China.
Biomater Res. 2025 Apr 9;29:0182. doi: 10.34133/bmr.0182. eCollection 2025.
The extracellular matrix (ECM) creates a dynamic mechanical environment for cellular functions, continuously influencing cellular activities via the mechanotransduction pathway. Mechanosensitive ion channels, recently identified as key mechanotransducers, convert mechanical stimuli into electrical or chemical signals when they detect membrane deformation. This process facilitates extracellular Ca influx, cytoskeletal reorganization, and transcriptional regulation, all of which are essential for cellular physiological functions. In this study, we developed a fibrous hydrogel composite (PIC/OEG-NPs) with near-infrared (NIR) light-controlled dynamic mechanical properties to modulate mechanosensitive ion channels in cells, by using oligo-ethylene glycol (OEG)-assembled polyisocyanide (PIC) polymer and OEG-grafted conjugated polymer nanoparticles (OEG-NPs). PIC and OEG-NPs assemble into PIC/OEG-NPs composites through OEG-mediated hydrophobic interactions when heated. Under NIR stimulation, the PIC/OEG-NPs composites exhibit increased mechanical tension and form tighter fibrous networks due to their thermoresponsive behavior. These changes are reversible and allow for the dynamic regulation of mechanosensitive ion channels, including Piezo1 in transfected HEK-293T cells and the endogenous TRPV4 in human umbilical vein endothelial cells (HUVECs), by switching NIR on and off. Furthermore, this process enhances the angiogenic potential of HUVECs. In summary, we present a simple and effective platform for in situ modulation of mechanosensitive ion channels in 3 dimensions.
细胞外基质(ECM)为细胞功能创造了一个动态的力学环境,通过机械转导途径持续影响细胞活动。机械敏感离子通道最近被确定为关键的机械转导器,当它们检测到膜变形时,会将机械刺激转化为电信号或化学信号。这一过程促进细胞外钙离子内流、细胞骨架重组和转录调控,所有这些对于细胞生理功能都至关重要。在本研究中,我们通过使用低聚乙二醇(OEG)组装的聚异氰化物(PIC)聚合物和OEG接枝的共轭聚合物纳米颗粒(OEG-NPs),开发了一种具有近红外(NIR)光控动态力学性能的纤维状水凝胶复合材料(PIC/OEG-NPs),以调节细胞中的机械敏感离子通道。加热时,PIC和OEG-NPs通过OEG介导的疏水相互作用组装成PIC/OEG-NPs复合材料。在近红外刺激下,PIC/OEG-NPs复合材料由于其热响应行为而表现出增加的机械张力并形成更紧密的纤维网络。这些变化是可逆的,通过打开和关闭近红外光,可以动态调节机械敏感离子通道,包括转染的HEK-293T细胞中的Piezo1和人脐静脉内皮细胞(HUVECs)中的内源性TRPV4。此外,这一过程增强了HUVECs的血管生成潜力。总之,我们提出了一个简单有效的平台,用于在三维空间中原位调节机械敏感离子通道。