Suppr超能文献

一种预测心脏手术患者机械通气时间延长的新型评分模型:开发与验证。

A novel scoring model for predicting prolonged mechanical ventilation in cardiac surgery patients: development and validation.

作者信息

Liu Quan, Chen Pengfei, Wang Wuwei, Zhou Yifei, Xu Yichen, Cao Xu, Fan Rui, Chen Wen, Huang Fuhua, Chen Xin

机构信息

School of Medicine, Southeast University, Nanjing, Jiangsu, China.

Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.

出版信息

Front Cardiovasc Med. 2025 Mar 26;12:1573874. doi: 10.3389/fcvm.2025.1573874. eCollection 2025.

Abstract

OBJECTIVE

Prolonged mechanical ventilation (PMV) is a significant postoperative complication in cardiac surgery, associated with increased mortality and healthcare costs. This study aims to develop and validate a novel scoring model to predict the risk of PMV in cardiac surgery patients.

METHODS

A retrospective analysis was conducted using data from 14 comprehensive hospitals in Jiangsu Province, including adult patients who underwent coronary artery bypass grafting (CABG), valve surgery, and aortic surgery from January 2021 to December 2022. Predictive variables were selected based on clinical expertise and prior literature, and a nomogram was developed using LASSO regression and multiple logistic regression. Model performance was evaluated using the C-index, calibration plots, and decision curve analysis (DCA).

RESULTS

A total of 5,206 patients were included in the final analysis. The incidence rate of PMV were 11.83% in the training set, 8.65% in the internal validation set, and 15.4% in the external validation set. The nomogram identified 9 significant predictors, including age, gender, preoperative conditions, and surgical factors. The model demonstrated robust performance with C-index values of 0.79 in the training and internal validation sets and 0.75 in the external validation set, indicating good predictive capability. Calibration curves confirmed the accuracy of predicted probabilities, and DCA indicated substantial net benefits for clinical decision-making.

CONCLUSIONS

This study presents a validated scoring model for predicting PMV in cardiac surgery patients, integrating a comprehensive range of clinical variables. The model facilitates early identification of high-risk patients, enabling tailored perioperative strategies and potentially improving patient outcomes and resource utilization in cardiac surgery.

摘要

目的

长时间机械通气(PMV)是心脏手术中一种重要的术后并发症,与死亡率增加和医疗成本上升相关。本研究旨在开发并验证一种新型评分模型,以预测心脏手术患者发生PMV的风险。

方法

利用江苏省14家综合医院的数据进行回顾性分析,纳入2021年1月至2022年12月期间接受冠状动脉旁路移植术(CABG)、瓣膜手术和主动脉手术的成年患者。基于临床专业知识和既往文献选择预测变量,并使用LASSO回归和多元逻辑回归开发列线图。使用C指数、校准图和决策曲线分析(DCA)评估模型性能。

结果

最终分析共纳入5206例患者。训练集、内部验证集和外部验证集的PMV发生率分别为11.83%、8.65%和15.4%。列线图确定了9个显著预测因素,包括年龄、性别、术前状况和手术因素。该模型在训练集和内部验证集中的C指数值为0.79,在外部验证集中为0.75,表现出强大的性能,表明具有良好的预测能力。校准曲线证实了预测概率的准确性,DCA表明临床决策具有显著的净效益。

结论

本研究提出了一种经过验证的评分模型,用于预测心脏手术患者的PMV,整合了一系列全面的临床变量。该模型有助于早期识别高危患者,实现量身定制的围手术期策略,并可能改善心脏手术患者的预后和资源利用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/067a/11979142/5af8b8b58d03/fcvm-12-1573874-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验