Silva Dos Santos José Roberto, Azevedo Caio Lucidius Naberezny, Fox Jean-Paul
Department of Statistics and Applied Mathematics, Federal University of Ceara, Fortaleza, Brazil.
Department of Statistics, University of Campinas, Campinas, Brazil.
Multivariate Behav Res. 2025 Jul-Aug;60(4):784-816. doi: 10.1080/00273171.2025.2480437. Epub 2025 Apr 10.
In this work, we introduce a multiple-group longitudinal IRT model that accounts for skewed latent trait distributions. Our approach extends the model proposed by Santos et al. in 2022, which introduced a general class of longitudinal IRT models. The latent traits follow a multivariate skew-normal distribution, induced by an antedependence structure with centered skew-normal errors. Additionally, latent mean trajectories are modeled using quadratic curves, while structured covariance matrices capture within-participant dependencies. A three-parameter probit model is employed for dichotomous items. Bayesian parameter estimation and model fit assessment are conducted through a hybrid MCMC algorithm, combining the FFBS sampler with Metropolis-Hastings steps. The model's effectiveness is demonstrated through an application to real data from the Longitudinal Study of the 2005 School Generation in Brazil (GERES project), where it outperforms the normal model by better capturing asymmetry in latent traits. A simulation study further supports its robustness across various test conditions.
在这项工作中,我们引入了一种多组纵向IRT模型,该模型考虑了偏态潜在特质分布。我们的方法扩展了桑托斯等人在2022年提出的模型,该模型引入了一类通用的纵向IRT模型。潜在特质遵循多元偏态正态分布,由具有中心偏态正态误差的反相依结构诱导产生。此外,潜在均值轨迹使用二次曲线建模,而结构化协方差矩阵捕捉参与者内部的依赖性。对于二分项目,采用三参数概率模型。通过一种混合MCMC算法进行贝叶斯参数估计和模型拟合评估,该算法将FFBS采样器与Metropolis-Hastings步骤相结合。通过应用于巴西2005年学校代纵向研究(GERES项目)的真实数据,证明了该模型的有效性,在该应用中,它通过更好地捕捉潜在特质中的不对称性优于正态模型。一项模拟研究进一步支持了其在各种测试条件下的稳健性。