Faculty of Science and Engineering, Cell Biology, Åbo Akademi, University, 20520 Turku, Finland.
Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal.
Curr Opin Cell Biol. 2023 Dec;85:102271. doi: 10.1016/j.ceb.2023.102271. Epub 2023 Oct 27.
Live imaging is a powerful tool, enabling scientists to observe living organisms in real time. In particular, when combined with fluorescence microscopy, live imaging allows the monitoring of cellular components with high sensitivity and specificity. Yet, due to critical challenges (i.e., drift, phototoxicity, dataset size), implementing live imaging and analyzing the resulting datasets is rarely straightforward. Over the past years, the development of bioimage analysis tools, including deep learning, is changing how we perform live imaging. Here we briefly cover important computational methods aiding live imaging and carrying out key tasks such as drift correction, denoising, super-resolution imaging, artificial labeling, tracking, and time series analysis. We also cover recent advances in self-driving microscopy.
实时成像技术是一种强大的工具,使科学家能够实时观察活体生物。特别是,与荧光显微镜结合使用时,实时成像可以高灵敏度和特异性监测细胞成分。然而,由于关键挑战(例如漂移、光毒性、数据集大小),实时成像的实现和对生成的数据集进行分析并不总是那么简单。在过去的几年中,生物图像分析工具(包括深度学习)的发展正在改变我们进行实时成像的方式。在这里,我们简要介绍了辅助实时成像和执行关键任务(如漂移校正、去噪、超分辨率成像、人工标记、跟踪和时间序列分析)的重要计算方法。我们还介绍了自动显微镜的最新进展。