Adnan Adnan Qahtan, Hussain Mohammed Khalil, Mohammadzadeh Ardashir, Sabahi Kamran
Department of Energy Engineering, University of Baghdad, Baghdad, Iraq.
Faculty of Engineering, Department of Electrical and Electronics Engineering, Sakarya University, Sakarya, Türkiye.
ISA Trans. 2025 Jun;161:200-215. doi: 10.1016/j.isatra.2025.03.025. Epub 2025 Apr 3.
The blade pitch angle (BPA) controller is key factor to improve the power generation of wind turbine (WT). Due to the aerodynamic structural behavior of the rotor blades, wind turbine system performance is influenced by pitch angle and environmental conditions such as wind speed, which fluctuate throughout the day. Therefore, to overcome the pitch angle control (PAC) problem, high wind speed conditions, and due to type-1 and type-2 fuzzy logic limitations for handling high levels of uncertainty, the newly proposed optimal hybrid type-3 fuzzy logic controller has been applied and compared since type-3 fuzzy controllers utilize three-dimensional membership functions, unlike type-2 and type-1 fuzzy logic controllers. In this paper six different controllers are applied and compared for BPA in WT: type-1 fuzzy logic controller (T1-FLC), interval type-2 fuzzy logic controller (IT2-FLC), interval type-3 fuzzy logic controller (IT3-FLC), optimal hybrid type-1 fuzzy-PID controller (HT1-FPIDC), optimal hybrid type-2 fuzzy-PID controller (HT2-FPIDC), and optimal hybrid type-3 fuzzy-PID controller (HT3-FPIDC). The comparison between Mamdani and Sugeno fuzzy inference systems (FIS) has been applied to find the best inference system. Genetic Algorithm (GA) and Particle swarm optimization (PSO) are used to find the optimal tuning of PID parameters. The results of the 500-kw horizontal axis wind turbine show that Sugeno FIS has higher stability in output power generation than Mamdani FIS. Also, optimal HT3-FPIDC based on Mamdani FIS with PSO provides 19.74 % lower absolute summation error (ASE) than Sugeno FIS in optimal HT2-FLC with PSO and 39.03 % lower ASE than optimal HT1-FLC based on Sugeno FIS with PSO. Finally, the proposed optimal HT3-FPIDC based on PSO and Mamdani FIS provides the optimal results in terms of consistent output power generation at rated value.
叶片桨距角(BPA)控制器是提高风力发电机组(WT)发电量的关键因素。由于转子叶片的空气动力学结构特性,风力发电机组系统性能受桨距角和风速等环境条件的影响,而风速在一天中会不断波动。因此,为解决桨距角控制(PAC)问题以及应对高风速条件,并且鉴于1型和2型模糊逻辑在处理高度不确定性方面的局限性,新提出的最优混合3型模糊逻辑控制器已被应用并进行比较,因为与2型和1型模糊逻辑控制器不同,3型模糊控制器使用三维隶属函数。本文针对风力发电机组中的BPA应用并比较了六种不同的控制器:1型模糊逻辑控制器(T1-FLC)、区间2型模糊逻辑控制器(IT2-FLC)、区间3型模糊逻辑控制器(IT3-FLC)、最优混合1型模糊-PID控制器(HT1-FPIDC)、最优混合2型模糊-PID控制器(HT2-FPIDC)和最优混合3型模糊-PID控制器(HT3-FPIDC)。已对Mamdani和Sugeno模糊推理系统(FIS)进行比较,以找出最佳推理系统。使用遗传算法(GA)和粒子群优化(PSO)来寻找PID参数的最优调整。500千瓦水平轴风力发电机组的结果表明,Sugeno FIS在输出发电方面比Mamdani FIS具有更高的稳定性。此外,基于带有PSO的Mamdani FIS的最优HT3-FPIDC比基于带有PSO的最优HT2-FLC中的Sugeno FIS的绝对求和误差(ASE)低19.74%,比基于带有PSO的Sugeno FIS的最优HT1-FLC的ASE低39.03%。最后,基于PSO和Mamdani FIS提出的最优HT3-FPIDC在额定值下的一致输出发电方面提供了最优结果。