Suppr超能文献

一种包含多体接触的神经网络有限元三叶心脏瓣膜模型。

A Neural Network Finite Element Trileaflet Heart Valve Model Incorporating Multi-Body Contact.

作者信息

Meyer Kenneth, Goodbrake Christian, Sacks Michael S

机构信息

James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA.

出版信息

Int J Numer Method Biomed Eng. 2025 Apr;41(4):e70038. doi: 10.1002/cnm.70038.

Abstract

The use of patient-specific computational modeling of cardiovascular diseases has become increasingly popular to improve patient standard of care. Most simulation approaches currently utilize the finite element method (FEM), which is very well established and succeeds in producing high-fidelity results. However, it remains too slow for use in clinical settings, especially when many-query solutions are required to determine optimal therapeutic approaches. As a step toward addressing these demands, we have developed a Neural Network Finite Element (NNFE) approach that greatly accelerates simulations of soft tissue organ function. While the NNFE method utilizes conventional FEM meshes to define the problem geometry, it leverages advancements in neural network architecture design in new GPU-based software tools to solve the governing hyperelastic material PDEs. The NNFE method has recently captured physical contact between a deformable body and a frictionless symmetry plane. In the present work, we extended the NNFE approach to simulate trileaflet heart valve closure as a critical step in moving toward patient-specific applications. Our approach addressed two critical aspects of heart valve simulations: the use of 3D solid leaflet models as opposed to shell-based leaflet models and multi-body contact between the leaflets. We verified the approach by comparing displacements of NNFE simulated closure of a single heart valve leaflet against a frictionless symmetry plane with an identical simulation in tIGAr, the open-source isogeometric analysis extension of FEniCS. The average nodal displacement error was 0.020 mm (0.47% of the maximum displacement). We further evaluated our implementation by varying leaflet collagen fiber directions to mimic physiologically accurate deformation modes. Results of the approach indicated that the observed leaflet deformation patterns agreed well with previous trileaflet simulations. Significant variations in stress were observed transmurally, underscoring the need for solid elements to model leaflet geometry. Computational speed improvements produced an approximately 100-fold speedup, with the NNFE simulations of single leaflet closure taking 0.28 s while its FE counterpart took 61 s. Full trileaflet valve models with multi-body contact simulations took approximately 5 s, whereas equivalent FEM simulations take several hours. Training the full trileaflet model took approximately 16 h and was trained over the full functional range of pressure, so that training was only required once for all subsequent simulations. We conclude that the NNFE method can be successfully used to perform rapid simulations of complex 3D soft organ systems, such as the trileaflet heart valve, that involve large deformations, 3D geometries, and multi-body contact. Moreover, the ability to perform post-trained simulations in dramatically shorter time periods underscores the promise of machine learning-based computational mechanics approaches in patient-specific predictive computational models.

摘要

使用针对特定患者的心血管疾病计算模型来提高患者的护理标准已变得越来越普遍。目前大多数模拟方法都采用有限元法(FEM),该方法非常成熟且能成功产生高保真结果。然而,它在临床环境中的使用仍然过于缓慢,尤其是在需要许多查询解决方案来确定最佳治疗方法时。作为满足这些需求的一步,我们开发了一种神经网络有限元(NNFE)方法,该方法极大地加速了软组织器官功能的模拟。虽然NNFE方法利用传统的FEM网格来定义问题的几何形状,但它利用基于新的GPU的软件工具中神经网络架构设计的进步来求解控制超弹性材料的偏微分方程(PDEs)。NNFE方法最近捕捉到了可变形体与无摩擦对称平面之间的物理接触。在本工作中,我们将NNFE方法扩展到模拟三叶心脏瓣膜关闭,这是迈向特定患者应用的关键一步。我们的方法解决了心脏瓣膜模拟的两个关键方面:使用3D实体瓣叶模型而非基于壳的瓣叶模型以及瓣叶之间的多体接触。我们通过将NNFE模拟的单个心脏瓣膜瓣叶相对于无摩擦对称平面的关闭位移与tIGAr(FEniCS的开源等几何分析扩展)中的相同模拟进行比较,验证了该方法。平均节点位移误差为0.020毫米(最大位移的0.47%)。我们通过改变瓣叶胶原纤维方向以模拟生理上准确的变形模式,进一步评估了我们的实现。该方法的结果表明,观察到的瓣叶变形模式与先前的三叶瓣模拟结果非常吻合。在整个厚度上观察到应力有显著变化,这突出了使用实体单元来模拟瓣叶几何形状的必要性。计算速度的提高带来了大约100倍的加速,NNFE模拟单个瓣叶关闭需要0.28秒,而其有限元对应模拟需要61秒。具有多体接触模拟的完整三叶瓣模型大约需要5秒,而等效的有限元模拟则需要数小时。训练完整的三叶瓣模型大约需要16小时,并且是在整个压力功能范围内进行训练的,因此所有后续模拟只需要训练一次。我们得出结论,NNFE方法可以成功地用于对复杂的3D软器官系统(如三叶心脏瓣膜)进行快速模拟,这些系统涉及大变形、3D几何形状和多体接触。此外,能够在显著更短的时间内进行训练后模拟,突出了基于机器学习的计算力学方法在特定患者预测计算模型中的前景。

相似文献

1
A Neural Network Finite Element Trileaflet Heart Valve Model Incorporating Multi-Body Contact.
Int J Numer Method Biomed Eng. 2025 Apr;41(4):e70038. doi: 10.1002/cnm.70038.
2
Neural Network Approaches for Soft Biological Tissue and Organ Simulations.
J Biomech Eng. 2022 Dec 1;144(12). doi: 10.1115/1.4055835.
4
Simulation of the 3D Hyperelastic Behavior of Ventricular Myocardium using a Finite-Element Based Neural-Network Approach.
Comput Methods Appl Mech Eng. 2022 May 1;394. doi: 10.1016/j.cma.2022.114871. Epub 2022 Apr 1.
5
Simulating the time evolving geometry, mechanical properties, and fibrous structure of bioprosthetic heart valve leaflets under cyclic loading.
J Mech Behav Biomed Mater. 2021 Nov;123:104745. doi: 10.1016/j.jmbbm.2021.104745. Epub 2021 Aug 19.
6
Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
Med Eng Phys. 2009 Nov;31(9):1110-7. doi: 10.1016/j.medengphy.2009.07.012. Epub 2009 Sep 20.
7
FEBio FINESSE: An Open-Source Finite Element Simulation Approach to Estimate In Vivo Heart Valve Strains Using Shape Enforcement.
Ann Biomed Eng. 2025 Jan;53(1):241-259. doi: 10.1007/s10439-024-03637-3. Epub 2024 Nov 5.
8
Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans.
Ann Biomed Eng. 2013 Jan;41(1):142-53. doi: 10.1007/s10439-012-0620-6. Epub 2012 Jul 18.
9
Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis.
J Mech Behav Biomed Mater. 2016 Sep;62:33-44. doi: 10.1016/j.jmbbm.2016.04.031. Epub 2016 Apr 30.
10
Dynamic simulation pericardial bioprosthetic heart valve function.
J Biomech Eng. 2006 Oct;128(5):717-24. doi: 10.1115/1.2244578.

本文引用的文献

1
Functional mechanical behavior of the murine pulmonary heart valve.
Sci Rep. 2023 Aug 8;13(1):12852. doi: 10.1038/s41598-023-40158-w.
3
Neural Network Approaches for Soft Biological Tissue and Organ Simulations.
J Biomech Eng. 2022 Dec 1;144(12). doi: 10.1115/1.4055835.
4
Simulation of the 3D Hyperelastic Behavior of Ventricular Myocardium using a Finite-Element Based Neural-Network Approach.
Comput Methods Appl Mech Eng. 2022 May 1;394. doi: 10.1016/j.cma.2022.114871. Epub 2022 Apr 1.
5
A machine learning model to estimate myocardial stiffness from EDPVR.
Sci Rep. 2022 Mar 31;12(1):5433. doi: 10.1038/s41598-022-09128-6.
6
On the shape and structure of the murine pulmonary heart valve.
Sci Rep. 2021 Jul 7;11(1):14078. doi: 10.1038/s41598-021-93513-0.
8
Personalising left-ventricular biophysical models of the heart using parametric physics-informed neural networks.
Med Image Anal. 2021 Jul;71:102066. doi: 10.1016/j.media.2021.102066. Epub 2021 Apr 20.
9
Precision medicine in human heart modeling : Perspectives, challenges, and opportunities.
Biomech Model Mechanobiol. 2021 Jun;20(3):803-831. doi: 10.1007/s10237-021-01421-z. Epub 2021 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验