Suppr超能文献

基于等几何有限元的主动脉心脏瓣膜模拟:神经网络结构材料模型和结构张量纤维结构表示的集成。

Isogeometric finite element-based simulation of the aortic heart valve: Integration of neural network structural material model and structural tensor fiber architecture representations.

机构信息

James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Science, University of Texas at Austin, Austin, Texas, USA.

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.

出版信息

Int J Numer Method Biomed Eng. 2021 Apr;37(4):e3438. doi: 10.1002/cnm.3438. Epub 2021 Feb 10.

Abstract

The functional complexity of native and replacement aortic heart valves (AVs) is well known, incorporating such physical phenomenons as time-varying non-linear anisotropic soft tissue mechanical behavior, geometric non-linearity, complex multi-surface time varying contact, and fluid-structure interactions to name a few. It is thus clear that computational simulations are critical in understanding AV function and for the rational basis for design of their replacements. However, such approaches continued to be limited by ad-hoc approaches for incorporating tissue fibrous structure, high-fidelity material models, and valve geometry. To this end, we developed an integrated tri-leaflet valve pipeline built upon an isogeometric analysis framework. A high-order structural tensor (HOST)-based method was developed for efficient storage and mapping the two-dimensional fiber structural data onto the valvular 3D geometry. We then developed a neural network (NN) material model that learned the responses of a detailed meso-structural model for exogenously cross-linked planar soft tissues. The NN material model not only reproduced the full anisotropic mechanical responses but also demonstrated a considerable efficiency improvement, as it was trained over a range of realizable fibrous structures. Results of parametric simulations were then performed, as well as population-based bicuspid AV fiber structure, that demonstrated the efficiency and robustness of the present approach. In summary, the present approach that integrates HOST and NN material model provides an efficient computational analysis framework with increased physical and functional realism for the simulation of native and replacement tri-leaflet heart valves.

摘要

天然和替代主动脉心脏瓣膜(AV)的功能复杂性是众所周知的,它包含了一些物理现象,如时变非线性各向异性软组织力学行为、几何非线性、复杂的多曲面时变接触和流固相互作用等。因此,计算模拟对于理解 AV 的功能以及为其替代品的合理设计提供依据是至关重要的。然而,这些方法仍然受到组织纤维结构、高保真材料模型和瓣膜几何形状的特定方法的限制。为此,我们开发了一个基于等几何分析框架的三尖瓣综合管道。我们开发了一种基于高阶结构张量(HOST)的方法,用于高效地存储和将二维纤维结构数据映射到瓣膜的 3D 几何形状上。然后,我们开发了一个神经网络(NN)材料模型,该模型学习了外源性交联平面软组织的详细细观结构模型的响应。NN 材料模型不仅再现了完整的各向异性力学响应,而且由于它是在一系列可实现的纤维结构上进行训练的,因此还提高了效率。然后进行了参数模拟和基于人群的二叶式 AV 纤维结构的结果,证明了本方法的效率和鲁棒性。总之,这种集成 HOST 和 NN 材料模型的方法为天然和替代三叶式心脏瓣膜的模拟提供了一个高效的计算分析框架,增加了物理和功能的真实性。

相似文献

2
Neural Network Approaches for Soft Biological Tissue and Organ Simulations.
J Biomech Eng. 2022 Dec 1;144(12). doi: 10.1115/1.4055835.
3
Simulating the time evolving geometry, mechanical properties, and fibrous structure of bioprosthetic heart valve leaflets under cyclic loading.
J Mech Behav Biomed Mater. 2021 Nov;123:104745. doi: 10.1016/j.jmbbm.2021.104745. Epub 2021 Aug 19.
4
Non-linear rotation-free shell finite-element models for aortic heart valves.
J Biomech. 2017 Jan 4;50:56-62. doi: 10.1016/j.jbiomech.2016.11.031. Epub 2016 Nov 14.
5
Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
Med Eng Phys. 2009 Nov;31(9):1110-7. doi: 10.1016/j.medengphy.2009.07.012. Epub 2009 Sep 20.
6
Material modeling and recent findings in transcatheter aortic valve implantation simulations.
Comput Methods Programs Biomed. 2024 Oct;255:108314. doi: 10.1016/j.cmpb.2024.108314. Epub 2024 Jul 4.
7
A computational multi-scale approach to investigate mechanically-induced changes in tricuspid valve anterior leaflet microstructure.
Acta Biomater. 2019 Aug;94:524-535. doi: 10.1016/j.actbio.2019.05.074. Epub 2019 Jun 20.
8
Subject-specific finite-element modeling of normal aortic valve biomechanics from 3D+t TEE images.
Med Image Anal. 2015 Feb;20(1):162-72. doi: 10.1016/j.media.2014.11.003. Epub 2014 Nov 15.
9
A material modeling approach for the effective response of planar soft tissues for efficient computational simulations.
J Mech Behav Biomed Mater. 2019 Jan;89:168-198. doi: 10.1016/j.jmbbm.2018.09.016. Epub 2018 Sep 20.
10
Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis.
J Mech Behav Biomed Mater. 2016 Sep;62:33-44. doi: 10.1016/j.jmbbm.2016.04.031. Epub 2016 Apr 30.

引用本文的文献

1
A Neural Network Finite Element Trileaflet Heart Valve Model Incorporating Multi-Body Contact.
Int J Numer Method Biomed Eng. 2025 Apr;41(4):e70038. doi: 10.1002/cnm.70038.
2
Current progress toward isogeometric modeling of the heart biophysics.
Biophys Rev (Melville). 2023 Nov 13;4(4):041301. doi: 10.1063/5.0152690. eCollection 2023 Dec.
3
Learning the intrinsic dynamics of spatio-temporal processes through Latent Dynamics Networks.
Nat Commun. 2024 Feb 28;15(1):1834. doi: 10.1038/s41467-024-45323-x.
4
The Potential of Deep Learning to Advance Clinical Applications of Computational Biomechanics.
Bioengineering (Basel). 2023 Sep 9;10(9):1066. doi: 10.3390/bioengineering10091066.
5
Biomechanics of Transcatheter Aortic Valve Replacement Complications and Computational Predictive Modeling.
Struct Heart. 2022 Jun 3;6(2):100032. doi: 10.1016/j.shj.2022.100032. eCollection 2022 Jun.
6
Strain energy density as a Gaussian process and its utilization in stochastic finite element analysis: application to planar soft tissues.
Comput Methods Appl Mech Eng. 2023 Feb 1;404. doi: 10.1016/j.cma.2022.115812. Epub 2022 Dec 10.
7
Study of Biomechanics of the Heart Valve Leaflet Apparatus Using Numerical Simulation Method.
Sovrem Tekhnologii Med. 2022;14(2):6-14. doi: 10.17691/stm2022.14.2.01. Epub 2022 Mar 28.
8
Neural Network Approaches for Soft Biological Tissue and Organ Simulations.
J Biomech Eng. 2022 Dec 1;144(12). doi: 10.1115/1.4055835.
9
Integrating mechanism-based modeling with biomedical imaging to build practical digital twins for clinical oncology.
Biophys Rev (Melville). 2022 Jun;3(2):021304. doi: 10.1063/5.0086789. Epub 2022 May 17.
10
Anisotropic elastic behavior of a hydrogel-coated electrospun polyurethane: Suitability for heart valve leaflets.
J Mech Behav Biomed Mater. 2022 Jan;125:104877. doi: 10.1016/j.jmbbm.2021.104877. Epub 2021 Oct 14.

本文引用的文献

1
Non-Destructive Reflectance Mapping of Collagen Fiber Alignment in Heart Valve Leaflets.
Ann Biomed Eng. 2019 May;47(5):1250-1264. doi: 10.1007/s10439-019-02233-0. Epub 2019 Feb 19.
2
A material modeling approach for the effective response of planar soft tissues for efficient computational simulations.
J Mech Behav Biomed Mater. 2019 Jan;89:168-198. doi: 10.1016/j.jmbbm.2018.09.016. Epub 2018 Sep 20.
3
A contact formulation based on a volumetric potential: Application to isogeometric simulations of atrioventricular valves.
Comput Methods Appl Mech Eng. 2018 Mar 1;330:522-546. doi: 10.1016/j.cma.2017.11.007. Epub 2017 Nov 16.
4
An anisotropic constitutive model for immersogeometric fluid-structure interaction analysis of bioprosthetic heart valves.
J Biomech. 2018 Jun 6;74:23-31. doi: 10.1016/j.jbiomech.2018.04.012. Epub 2018 Apr 12.
5
A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid-structure interaction analysis.
Int J Numer Method Biomed Eng. 2018 Apr;34(4):e2938. doi: 10.1002/cnm.2938. Epub 2018 Jan 25.
6
Computational methods for the aortic heart valve and its replacements.
Expert Rev Med Devices. 2017 Nov;14(11):849-866. doi: 10.1080/17434440.2017.1389274. Epub 2017 Oct 23.
7
Modeling the response of exogenously crosslinked tissue to cyclic loading: The effects of permanent set.
J Mech Behav Biomed Mater. 2017 Nov;75:336-350. doi: 10.1016/j.jmbbm.2017.07.013. Epub 2017 Jul 11.
8
A novel constitutive model for passive right ventricular myocardium: evidence for myofiber-collagen fiber mechanical coupling.
Biomech Model Mechanobiol. 2017 Apr;16(2):561-581. doi: 10.1007/s10237-016-0837-7. Epub 2016 Oct 1.
9
Biomechanical Behavior of Bioprosthetic Heart Valve Heterograft Tissues: Characterization, Simulation, and Performance.
Cardiovasc Eng Technol. 2016 Dec;7(4):309-351. doi: 10.1007/s13239-016-0276-8. Epub 2016 Aug 9.
10
Optical-Based Analysis of Soft Tissue Structures.
Annu Rev Biomed Eng. 2016 Jul 11;18:357-85. doi: 10.1146/annurev-bioeng-071114-040625.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验