Suppr超能文献

模拟生物心脏瓣膜叶瓣在循环载荷下的时变几何形状、力学性能和纤维结构。

Simulating the time evolving geometry, mechanical properties, and fibrous structure of bioprosthetic heart valve leaflets under cyclic loading.

机构信息

James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712-0027, USA.

Computational Fluid-Structure Interaction Laboratory, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2030, USA.

出版信息

J Mech Behav Biomed Mater. 2021 Nov;123:104745. doi: 10.1016/j.jmbbm.2021.104745. Epub 2021 Aug 19.

Abstract

Currently, the most common replacement heart valve design is the 'bioprosthetic' heart valve (BHV), which has important advantages in that it does not require permanent anti-coagulation therapy, operates noiselessly, and has blood flow characteristics similar to the native valve. BHVs are typically fabricated from glutaraldehyde-crosslinked pericardial xenograft tissue biomaterials (XTBs) attached to a rigid, semi-flexible, or fully collapsible stent in the case of the increasingly popular transcutaneous aortic valve replacement (TAVR). While current TAVR assessments are positive, clinical results to date are generally limited to <2 years. Since TAVR leaflets are constructed using thinner XTBs, their mechanical demands are substantially greater than surgical BHV due to the increased stresses during in vivo operation, potentially resulting in decreased durability. Given the functional complexity of heart valve operation, in-silico predictive simulations clearly have potential to greatly improve the TAVR development process. As such simulations must start with accurate material models, we have developed a novel time-evolving constitutive model for pericardial xenograft tissue biomaterials (XTB) utilized in BHV (doi: 10.1016/j.jmbbm.2017.07.013). This model was able to simulate the observed tissue plasticity effects that occur in approximately in the first two years of in vivo function (50 million cycles). In the present work, we implemented this model into a complete simulation pipeline to predict the BHV time evolving geometry to 50 million cycles. The pipeline was implemented within an isogeometric finite element formulation that directly integrated our established BHV NURBS-based geometry (doi: 10.1007/s00466-015-1166-x). Simulations of successive loading cycles indicated continual changes in leaflet shape, as indicated by spatially varying increases in leaflet curvature. While the simulation model assumed an initial uniform fiber orientation distribution, anisotropic regional changes in leaflet tissue plastic strain induced a complex changes in regional fiber orientation. We have previously noted in our time-evolving constitutive model that the increases in collagen fiber recruitment with cyclic loading placed an upper bound on plastic strain levels. This effect was manifested by restricting further changes in leaflet geometry past 50 million cycles. Such phenomena was accurately captured in the valve-level simulations due to the use of a tissue-level structural-based modeling approach. Changes in basic leaflet dimensions agreed well with extant experimental studies. As a whole, the results of the present study indicate the complexity of BHV responses to cyclic loading, including changes in leaflet shape and internal fibrous structure. It should be noted that the later effect also influences changes in local mechanical behavior (i.e. changes in leaflet anisotropic tissue stress-strain relationship) due to internal fibrous structure resulting from plastic strains. Such mechanism-based simulations can help pave the way towards the application of sophisticated simulation technologies in the development of replacement heart valve technology.

摘要

目前,最常见的替代心脏瓣膜设计是“生物假体”心脏瓣膜(BHV),它具有重要的优点,即不需要永久性抗凝治疗,运行时无声,并且血流特性与原生瓣膜相似。BHVs 通常由戊二醛交联的心包膜异种移植物生物材料(XTB)制成,并在日益流行的经皮主动脉瓣置换术(TAVR)的情况下附着在刚性、半柔性或完全可折叠支架上。虽然目前的 TAVR 评估结果是积极的,但迄今为止的临床结果通常限于<2 年。由于 TAVR 瓣叶是使用较薄的 XTB 构建的,因此它们的机械需求由于体内操作期间的应力增加而大大大于手术 BHV,这可能导致耐久性降低。鉴于心脏瓣膜操作的功能复杂性,基于计算机的预测模拟显然有可能极大地改善 TAVR 开发过程。由于此类模拟必须从准确的材料模型开始,因此我们已经为用于 BHV 的心包异种移植物生物材料(XTB)开发了一种新颖的时变本构模型(doi:10.1016/j.jmbbm.2017.07.013)。该模型能够模拟体内功能的前两年(约 5000 万次循环)中发生的观察到的组织塑性效应。在本工作中,我们将该模型集成到完整的模拟管道中,以预测 BHV 在 5000 万次循环时的时变几何形状。该管道是在基于等几何的有限元公式中实现的,该公式直接集成了我们建立的基于 BHV 的 NURBS 几何形状(doi:10.1007/s00466-015-1166-x)。连续加载循环的模拟表明瓣叶形状不断变化,瓣叶曲率的空间变化表明瓣叶曲率不断增加。虽然模拟模型假设初始纤维取向分布均匀,但瓣叶组织塑性应变的各向异性区域变化导致了复杂的区域纤维取向变化。我们之前在时变本构模型中指出,随着循环加载,胶原纤维募集的增加对塑性应变水平施加了上限。这种效应表现为限制瓣叶几何形状在 5000 万次循环后进一步变化。由于使用了基于组织水平的结构建模方法,这种现象在瓣膜水平的模拟中得到了准确的捕捉。基本瓣叶尺寸的变化与现存的实验研究吻合良好。总的来说,本研究的结果表明 BHV 对循环加载的响应的复杂性,包括瓣叶形状和内部纤维结构的变化。应当注意,由于塑性应变导致的内部纤维结构,后期效应还会影响局部力学行为(即瓣叶各向异性组织的应力-应变关系的变化)。这种基于机制的模拟可以帮助为替代心脏瓣膜技术的发展应用复杂的模拟技术铺平道路。

相似文献

1
Simulating the time evolving geometry, mechanical properties, and fibrous structure of bioprosthetic heart valve leaflets under cyclic loading.
J Mech Behav Biomed Mater. 2021 Nov;123:104745. doi: 10.1016/j.jmbbm.2021.104745. Epub 2021 Aug 19.
2
Modeling the response of exogenously crosslinked tissue to cyclic loading: The effects of permanent set.
J Mech Behav Biomed Mater. 2017 Nov;75:336-350. doi: 10.1016/j.jmbbm.2017.07.013. Epub 2017 Jul 11.
3
Dynamic simulation pericardial bioprosthetic heart valve function.
J Biomech Eng. 2006 Oct;128(5):717-24. doi: 10.1115/1.2244578.
4
Simulated bioprosthetic heart valve deformation under quasi-static loading.
J Biomech Eng. 2005 Nov;127(6):905-14. doi: 10.1115/1.2049337.
5
Evaluation of transcatheter heart valve biomaterials: Computational modeling using bovine and porcine pericardium.
J Mech Behav Biomed Mater. 2019 Sep;97:159-170. doi: 10.1016/j.jmbbm.2019.05.020. Epub 2019 May 17.
6
Simulation of long-term fatigue damage in bioprosthetic heart valves: effects of leaflet and stent elastic properties.
Biomech Model Mechanobiol. 2014 Aug;13(4):759-70. doi: 10.1007/s10237-013-0532-x. Epub 2013 Oct 4.
7
Effect of bioprosthetic leaflet anisotropy on stent dynamics of Transcatheter Aortic Valve Replacement devices.
J Mech Behav Biomed Mater. 2024 Sep;157:106650. doi: 10.1016/j.jmbbm.2024.106650. Epub 2024 Jul 8.
9
Characterizing the collagen fiber orientation in pericardial leaflets under mechanical loading conditions.
Ann Biomed Eng. 2013 Mar;41(3):547-61. doi: 10.1007/s10439-012-0696-z. Epub 2012 Nov 21.
10
Response of heterograft heart valve biomaterials to moderate cyclic loading.
J Biomed Mater Res A. 2004 Jun 15;69(4):658-69. doi: 10.1002/jbm.a.30031.

引用本文的文献

2
A novel diffusion tensor based three-dimensional constitutive model for human breast tissue.
J Mech Behav Biomed Mater. 2025 Aug;168:106996. doi: 10.1016/j.jmbbm.2025.106996. Epub 2025 Apr 17.
3
Computational analysis of heart valve growth and remodeling after the Ross procedure.
Biomech Model Mechanobiol. 2024 Dec;23(6):1889-1907. doi: 10.1007/s10237-024-01874-y. Epub 2024 Sep 13.
4
Identifying Heterogeneous Micromechanical Properties of Biological Tissues via Physics-Informed Neural Networks.
Small Methods. 2025 Jan;9(1):e2400620. doi: 10.1002/smtd.202400620. Epub 2024 Aug 1.
6
Current progress toward isogeometric modeling of the heart biophysics.
Biophys Rev (Melville). 2023 Nov 13;4(4):041301. doi: 10.1063/5.0152690. eCollection 2023 Dec.
7
Leaflet Mechanical Stress in Different Designs and Generations of Transcatheter Aortic Valves: An in Vitro Study.
Struct Heart. 2023 Dec 19;8(2):100262. doi: 10.1016/j.shj.2023.100262. eCollection 2024 Mar.
8
Influence of Polymer Stiffness and Geometric Design on Fluid Mechanics in Tissue-Engineered Pulmonary Valve Scaffolds.
Ann Biomed Eng. 2024 Mar;52(3):575-587. doi: 10.1007/s10439-023-03401-z. Epub 2023 Nov 7.
9
Functional mechanical behavior of the murine pulmonary heart valve.
Sci Rep. 2023 Aug 8;13(1):12852. doi: 10.1038/s41598-023-40158-w.
10
Biomechanical analysis of novel leaflet geometries for bioprosthetic valves.
JTCVS Open. 2023 Apr 20;14:77-86. doi: 10.1016/j.xjon.2023.04.007. eCollection 2023 Jun.

本文引用的文献

1
Computational investigation of left ventricular hemodynamics following bioprosthetic aortic and mitral valve replacement.
Mech Res Commun. 2021 Mar;112. doi: 10.1016/j.mechrescom.2020.103604. Epub 2020 Oct 16.
2
Immersogeometric fluid-structure interaction modeling and simulation of transcatheter aortic valve replacement.
Comput Methods Appl Mech Eng. 2019 Dec 1;357. doi: 10.1016/j.cma.2019.07.025. Epub 2019 Aug 14.
3
Thinner biological tissues induce leaflet flutter in aortic heart valve replacements.
Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):19007-19016. doi: 10.1073/pnas.2002821117. Epub 2020 Jul 24.
4
Non-Destructive Reflectance Mapping of Collagen Fiber Alignment in Heart Valve Leaflets.
Ann Biomed Eng. 2019 May;47(5):1250-1264. doi: 10.1007/s10439-019-02233-0. Epub 2019 Feb 19.
5
A material modeling approach for the effective response of planar soft tissues for efficient computational simulations.
J Mech Behav Biomed Mater. 2019 Jan;89:168-198. doi: 10.1016/j.jmbbm.2018.09.016. Epub 2018 Sep 20.
6
An anisotropic constitutive model for immersogeometric fluid-structure interaction analysis of bioprosthetic heart valves.
J Biomech. 2018 Jun 6;74:23-31. doi: 10.1016/j.jbiomech.2018.04.012. Epub 2018 Apr 12.
7
A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid-structure interaction analysis.
Int J Numer Method Biomed Eng. 2018 Apr;34(4):e2938. doi: 10.1002/cnm.2938. Epub 2018 Jan 25.
8
Modeling the response of exogenously crosslinked tissue to cyclic loading: The effects of permanent set.
J Mech Behav Biomed Mater. 2017 Nov;75:336-350. doi: 10.1016/j.jmbbm.2017.07.013. Epub 2017 Jul 11.
9
Aldehyde reduction in a novel pericardial tissue reduces calcification using rabbit intramuscular model.
J Mater Sci Mater Med. 2017 Jan;28(1):16. doi: 10.1007/s10856-016-5829-8. Epub 2016 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验