Institute for Biomedical Engineering, ETH Zurich and University Zurich, Zurich, Switzerland.
Institute for Biomedical Engineering, ETH Zurich and University Zurich, Zurich, Switzerland.
Med Image Anal. 2021 Jul;71:102066. doi: 10.1016/j.media.2021.102066. Epub 2021 Apr 20.
We present a parametric physics-informed neural network for the simulation of personalised left-ventricular biomechanics. The neural network is constrained to the biophysical problem in two ways: (i) the network output is restricted to a subspace built from radial basis functions capturing characteristic deformations of left ventricles and (ii) the cost function used for training is the energy potential functional specifically tailored for hyperelastic, anisotropic, nearly-incompressible active materials. The radial bases are generated from the results of a nonlinear Finite Element model coupled with an anatomical shape model derived from high-resolution cardiac images. We show that, by coupling the neural network with a simplified circulation model, we can efficiently generate computationally inexpensive estimations of cardiac mechanics. Our model is 30 times faster than the reference Finite Element model used, including training time, while yielding satisfactory average errors in the predictions of ejection fraction (-3%), peak systolic pressure (7%), stroke work (4%) and myocardial strains (14%). This physics-informed neural network is well suited to efficiently augment cardiac images with functional data and to generate large sets of synthetic cases for training deep network classifiers while it provides efficient personalization to the specific patient of interest with a high level of detail.
我们提出了一种参数化物理信息神经网络,用于模拟个性化左心室生物力学。神经网络通过两种方式约束于生物物理问题:(i)网络输出被限制在一个由基函数构成的子空间,该基函数捕获左心室的特征变形;(ii)用于训练的代价函数是专门为超弹性、各向异性、近不可压缩的主动材料设计的能量势函数。基函数是从与基于高分辨率心脏图像的解剖形状模型耦合的非线性有限元模型的结果中生成的。我们表明,通过将神经网络与简化的循环模型耦合,我们可以高效地生成计算成本低廉的心脏力学估计值。我们的模型比所使用的参考有限元模型快 30 倍,包括训练时间,并且在预测射血分数(-3%)、收缩压峰值(7%)、心搏功(4%)和心肌应变(14%)方面具有令人满意的平均误差。这种物理信息神经网络非常适合有效地将功能数据与心脏图像进行扩充,并生成大量用于训练深度网络分类器的合成病例,同时可以为特定患者提供高度详细的个性化处理。