Wang Bingning, Doan Hieu A, Son Seoung-Bum, Abraham Daniel P, Trask Stephen E, Jansen Andrew, Xu Kang, Liao Chen
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA.
Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA.
Nat Commun. 2025 Apr 10;16(1):3413. doi: 10.1038/s41467-025-57961-w.
LiNiMnO (LNMO) is a high-capacity spinel-structured material with an average lithiation/de-lithiation potential at ca. 4.6-4.7 V vs Li/Li, far exceeding the stability limits of electrolytes. An efficient way to enable LNMO in lithium-ion batteries is to reformulate an electrolyte composition that stabilizes both graphitic (Gr) negative electrode with solid-electrolyte-interphase and LNMO with cathode-electrolyte-interphase. In this study, we select and test a diverse collection of 28 single and dual additives for the Gr||LNMO battery system. Subsequently, we train machine learning models on this dataset and employ the trained models to suggest 6 binary compositions out of 125, based on predicted final area-specific-impedance, impedance rise, and final specific-capacity. Such machine learning-generated new additives outperform the initial dataset. This finding not only underscores the efficacy of machine learning in identifying materials in a highly complicated application space but also showcases an accelerated material discovery workflow that directly integrates data-driven methods with battery testing experiments.
LiNiMnO(LNMO)是一种高容量的尖晶石结构材料,相对于Li/Li,其平均锂化/脱锂电位约为4.6 - 4.7V,远远超过了电解质的稳定性极限。在锂离子电池中启用LNMO的一种有效方法是重新设计电解质成分,以同时稳定具有固体电解质界面的石墨(Gr)负极和具有阴极电解质界面的LNMO。在本研究中,我们为Gr||LNMO电池系统选择并测试了28种单一和二元添加剂的不同组合。随后,我们在该数据集上训练机器学习模型,并使用训练好的模型根据预测的最终面积比阻抗、阻抗上升和最终比容量,从125种中推荐6种二元成分。这种由机器学习生成的新添加剂优于初始数据集。这一发现不仅强调了机器学习在高度复杂的应用空间中识别材料的有效性,还展示了一种加速的材料发现工作流程,该流程直接将数据驱动方法与电池测试实验相结合。