Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Nat Commun. 2022 Jun 14;13(1):3415. doi: 10.1038/s41467-022-30994-1.
Polymer electrolytes are promising candidates for the next generation lithium-ion battery technology. Large scale screening of polymer electrolytes is hindered by the significant cost of molecular dynamics (MD) simulation in amorphous systems: the amorphous structure of polymers requires multiple, repeated sampling to reduce noise and the slow relaxation requires long simulation time for convergence. Here, we accelerate the screening with a multi-task graph neural network that learns from a large amount of noisy, unconverged, short MD data and a small number of converged, long MD data. We achieve accurate predictions of 4 different converged properties and screen a space of 6247 polymers that is orders of magnitude larger than previous computational studies. Further, we extract several design principles for polymer electrolytes and provide an open dataset for the community. Our approach could be applicable to a broad class of material discovery problems that involve the simulation of complex, amorphous materials.
聚合物电解质是下一代锂离子电池技术的有前途的候选材料。在非晶态系统中,分子动力学 (MD) 模拟的成本很高,这极大地阻碍了聚合物电解质的大规模筛选:聚合物的非晶态结构需要多次重复采样以降低噪声,而缓慢的弛豫则需要长时间的模拟才能收敛。在这里,我们使用多任务图神经网络来加速筛选,该网络从大量嘈杂、未收敛、短 MD 数据和少量收敛、长 MD 数据中学习。我们准确地预测了 4 种不同的收敛特性,并筛选了 6247 种聚合物的空间,其规模比以前的计算研究大几个数量级。此外,我们还提取了一些聚合物电解质的设计原则,并为社区提供了一个开放的数据集。我们的方法可适用于涉及复杂非晶材料模拟的广泛的材料发现问题。