Suppr超能文献

用于预测剖宫产术后疼痛及个性化疼痛管理策略的机器学习模型的开发与验证:一项多中心研究

Development and validation of machine learning models for predicting post-cesarean pain and individualized pain management strategies: a multicenter study.

作者信息

Lv Shenjuan, Sun Ning, Hao Chunhui, Li Junqing, Li Yun

机构信息

Department of Anesthesiology, Jinan Second Maternal and Child Health Hospital, Shandong, China.

Ultrasound Department, Jinan Second Maternal and Child Health Hospital, Shandong, China.

出版信息

BMC Anesthesiol. 2025 Apr 10;25(1):170. doi: 10.1186/s12871-025-03034-w.

Abstract

BACKGROUND

Effective management of postoperative pain remains a significant challenge in obstetric care due to the variability in pain perception and response influenced by physical, medical, and psychosocial factors. Current standardized pain management protocols often fail to accommodate this variability, necessitating more tailored approaches.

OBJECTIVE

This study aims to improve postoperative pain management following cesarean sections by developing personalized protocols using machine learning (ML) models.

METHOD

The study analyzed the efficacy of eight ML models, including XGBoost, Random Forest, and Neural Networks, using data from two distinct hospital cohorts. Performance metrics such as Root Mean Squared Error (RMSE) and Coefficient of Determination (R²) were evaluated through internal and external validations. SHAP value analysis was used to identify key predictors influencing pain management outcomes.

RESULTS

The XGBoost model demonstrated superior performance, achieving the lowest RMSE and highest R². Key factors impacting pain management included esketamine use, anesthesia method, and anesthetic drug type, with esketamine significantly delaying the first activation of patient-controlled intravenous analgesia (PCIA).

CONCLUSIONS

The study highlights the potential of machine learning to refine postoperative pain management strategies in obstetric care, suggesting that personalized approaches, particularly incorporating esketamine and specific anesthesia methods, could enhance patient outcomes.

TRIAL REGISTRATION

Not applicable.

摘要

背景

由于身体、医学和社会心理因素影响疼痛感知和反应的变异性,术后疼痛的有效管理在产科护理中仍然是一项重大挑战。当前的标准化疼痛管理方案往往无法适应这种变异性,因此需要更具针对性的方法。

目的

本研究旨在通过使用机器学习(ML)模型制定个性化方案,改善剖宫产术后的疼痛管理。

方法

该研究使用来自两个不同医院队列的数据,分析了包括XGBoost、随机森林和神经网络在内的八个ML模型的疗效。通过内部和外部验证评估了均方根误差(RMSE)和决定系数(R²)等性能指标。使用SHAP值分析来确定影响疼痛管理结果的关键预测因素。

结果

XGBoost模型表现出卓越的性能,实现了最低的RMSE和最高的R²。影响疼痛管理的关键因素包括艾司氯胺酮的使用、麻醉方法和麻醉药物类型,其中艾司氯胺酮显著延迟了患者自控静脉镇痛(PCIA)的首次启动。

结论

该研究突出了机器学习在优化产科护理术后疼痛管理策略方面的潜力,表明个性化方法,特别是纳入艾司氯胺酮和特定麻醉方法,可能会改善患者预后。

试验注册

不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d823/11983914/63754aec069c/12871_2025_3034_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验