机器学习算法可可靠地用于识别骨科手术后长期使用阿片类药物的高风险患者:一项系统综述。
Machine Learning Algorithms Can Be Reliably Leveraged to Identify Patients at High Risk of Prolonged Postoperative Opioid Use Following Orthopedic Surgery: A Systematic Review.
作者信息
Krivicich Laura M, Jan Kyleen, Kunze Kyle N, Rice Morgan, Nho Shane J
机构信息
Department of Orthopedic Surgery, Tufts Medical Center, Boston, MA, USA.
Departments of Sports Medicine and Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA.
出版信息
HSS J. 2024 Nov;20(4):589-599. doi: 10.1177/15563316231164138. Epub 2023 Mar 31.
Machine learning (ML) has emerged as a method to determine patient-specific risk for prolonged postoperative opioid use after orthopedic procedures. : We sought to analyze the efficacy and validity of ML algorithms in identifying patients who are at high risk for prolonged opioid use following orthopedic procedures. : PubMed, EMBASE, and Web of Science Core Collection databases were queried for articles published prior to August 2021 for articles applying ML to predict prolonged postoperative opioid use following orthopedic surgeries. Features pertaining to patient demographics, surgical procedures, and ML algorithm performance were analyzed. : Ten studies met inclusion criteria: 4 spine, 3 knee, and 3 hip. Studies reported postoperative opioid use over 30 to 365 days and varied in defining prolonged use. Prolonged postsurgical opioid use frequency ranged from 4.3% to 40.9%. C-statistics for spine studies ranged from 0.70 to 0.81; for knee studies, 0.75 to 0.77; and for hip studies, 0.71 to 0.77. Brier scores for spine studies ranged from 0.039 to 0.076; for knee, 0.01 to 0.124; and for hip, 0.052 to 0.21. Seven articles reported calibration intercept (range: -0.02 to 0.16) and calibration slope (range: 0.88 to 1.08). Nine articles included a decision curve analysis. No investigations performed external validation. Thematic predictors of prolonged postoperative opioid use were preoperative opioid, benzodiazepine, or antidepressant use and extremes of age depending on procedure population. : This systematic review found that ML algorithms created to predict risk for prolonged postoperative opioid use in orthopedic surgery patients demonstrate good discriminatory performance. The frequency and predictive features of prolonged postoperative opioid use identified were consistent with existing literature, although algorithms remain limited by a lack of external validation and imperfect adherence to predictive modeling guidelines.
机器学习(ML)已成为一种确定骨科手术后患者长期使用阿片类药物风险的方法。我们试图分析ML算法在识别骨科手术后长期使用阿片类药物高风险患者方面的有效性和准确性。通过检索PubMed、EMBASE和Web of Science核心合集数据库,查找2021年8月之前发表的将ML应用于预测骨科手术后长期使用阿片类药物的文章。分析了与患者人口统计学、手术过程和ML算法性能相关的特征。十项研究符合纳入标准:四项脊柱手术、三项膝关节手术和三项髋关节手术。研究报告了术后30至365天的阿片类药物使用情况,且在长期使用的定义上有所不同。术后长期使用阿片类药物的频率在4.3%至40.9%之间。脊柱研究的C统计量在0.70至0.81之间;膝关节研究为0.75至0.77;髋关节研究为0.71至0.77。脊柱研究的Brier评分在0.039至0.076之间;膝关节为0.01至0.124;髋关节为0.052至0.21。七篇文章报告了校准截距(范围:-0.02至0.16)和校准斜率(范围:0.88至1.08)。九篇文章进行了决策曲线分析。没有研究进行外部验证。术后长期使用阿片类药物的主题预测因素是术前使用阿片类药物、苯二氮䓬类药物或抗抑郁药,以及根据手术人群而定的年龄极值。本系统评价发现,用于预测骨科手术患者术后长期使用阿片类药物风险的ML算法具有良好的鉴别性能。尽管算法仍因缺乏外部验证和对预测建模指南的不完全遵循而受到限制,但所确定的术后长期使用阿片类药物的频率和预测特征与现有文献一致。