Feuer Margalit L, Thinel Morgan, Huang Xiong, Cui Zhi-Hao, Shao Yinming, Kundu Asish K, Chica Daniel G, Han Myung-Geun, Pokratath Rohan, Telford Evan J, Cox Jordan, York Emma, Okuno Saya, Huang Chun-Ying, Bukula Owethu, Nashabeh Luca M, Qiu Siyuan, Nuckolls Colin P, Dean Cory R, Billinge Simon J L, Zhu Xiaoyang, Zhu Yimei, Basov Dmitri N, Millis Andrew J, Reichman David R, Pasupathy Abhay N, Roy Xavier, Ziebel Michael E
Department of Chemistry, Columbia University, New York, NY, 10027, USA.
Department of Physics, Columbia University, New York, NY, 10027, USA.
Adv Mater. 2025 Jun;37(24):e2418066. doi: 10.1002/adma.202418066. Epub 2025 Apr 10.
In materials with 1D electronic bands, electron-electron interactions can produce intriguing quantum phenomena, including spin-charge separation and charge density waves (CDW). Most of these systems, however, are non-magnetic, motivating a search for anisotropic materials where the coupling of charge and spin may affect emergent quantum states. Here, chemical intercalation of the van der Waals magnetic semiconductor CrSBr yields Li(tetrahydrofuran)CrSBr, which possesses an electronically driven quasi-1D CDW with an onset temperature above room temperature. Concurrently, electron doping increases the magnetic ordering temperature from 132 to 200 K and switches its interlayer magnetic coupling from antiferromagnetic to ferromagnetic. The spin-polarized nature of the anisotropic bands that give rise to this CDW enforces an intrinsic coupling of charge and spin. The coexistence and interplay of ferromagnetism and charge modulation in this exfoliatable material provide a promising platform for studying tunable quantum phenomena across a range of temperatures and thicknesses.
在具有一维电子能带的材料中,电子-电子相互作用可产生有趣的量子现象,包括自旋-电荷分离和电荷密度波(CDW)。然而,这些系统大多是非磁性的,这促使人们去寻找各向异性材料,在其中电荷与自旋的耦合可能会影响涌现的量子态。在此,对范德华磁性半导体CrSBr进行化学插层得到Li(tetrahydrofuran)CrSBr,其具有由电子驱动的准一维电荷密度波,起始温度高于室温。同时,电子掺杂将磁有序温度从132 K提高到200 K,并将其层间磁耦合从反铁磁转变为铁磁。产生这种电荷密度波的各向异性能带的自旋极化特性强制了电荷与自旋的内在耦合。这种可剥离材料中铁磁性与电荷调制的共存及相互作用为研究一系列温度和厚度范围内的可调谐量子现象提供了一个很有前景的平台。