Dufour Sara, Maia Teresa Mendes, Van Moortel Laura, Delhaye Louis, Eyckerman Sven, Devos Simon
VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.
Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
Methods Mol Biol. 2025;2953:311-322. doi: 10.1007/978-1-0716-4694-6_20.
Proximity labeling combined with mass spectrometry (MS)-based proteomics has become an essential tool in interactomics. Proximity-dependent biotin identification (BioID) is a versatile method for identifying interacting and neighboring proteins within their native cellular environments. In BioID, the target (bait) protein is fused to a mutated BirA tag that biotinylates vicinal proteins (preys), which are subsequently purified and analyzed using LC-MS/MS. While data-dependent acquisition (DDA) has been the standard for MS-based proteomics, it suffers from bias toward abundant peptides, leading to missing data. In contrast, data-independent acquisition (DIA) improves the identification of low-abundant peptides, providing a more comprehensive proteomic analysis. This chapter outlines a data analysis workflow for BioID experiments in both DDA and DIA modes, using data from a study on the glucocorticoid receptor (GR) as an example. Data analysis was performed using MaxQuant, FragPipe, and DIA-NN, with downstream processing and statistical analysis conducted in R, incorporating SAINTq to enhance the reliability of bait-prey interaction identification.
将邻近标记与基于质谱(MS)的蛋白质组学相结合已成为相互作用组学中的一项重要工具。邻近依赖性生物素识别(BioID)是一种在天然细胞环境中识别相互作用和相邻蛋白质的通用方法。在BioID中,目标(诱饵)蛋白与一个突变的BirA标签融合,该标签对邻近蛋白(猎物)进行生物素化,随后使用液相色谱-串联质谱(LC-MS/MS)对这些蛋白进行纯化和分析。虽然数据依赖型采集(DDA)一直是基于MS的蛋白质组学的标准方法,但它存在对丰度较高肽段存在偏向性的问题,导致数据缺失。相比之下,数据非依赖型采集(DIA)提高了对低丰度肽段的识别能力,提供了更全面的蛋白质组分析。本章以一项关于糖皮质激素受体(GR)的研究数据为例,概述了DDA和DIA模式下BioID实验的数据分析工作流程。使用MaxQuant、FragPipe和DIA-NN进行数据分析,并在R中进行下游处理和统计分析,同时纳入SAINTq以提高诱饵-猎物相互作用识别的可靠性。