Bauer Christoph, Veremchuk Igor, Kunze Christof, Benad Albrecht, Dzhagan Volodymyr M, Haubold Danny, Pohl Darius, Schierning Gabi, Nielsch Kornelius, Lesnyak Vladimir, Eychmüller Alexander
Physical Chemistry TU Dresden Zellescher Weg 19 01069 Dresden Germany.
Max Planck Institute of Chemical Physics of Solids Nöthnitzer Str. 40 01187 Dresden Germany.
Small Sci. 2020 Oct 25;1(1):2000021. doi: 10.1002/smsc.202000021. eCollection 2021 Jan.
The n-type semiconductor system BiTe-BiSe is known as a low-temperature thermoelectric material with a potentially high efficiency. Herein, a facile approach is reported to synthesize core/shell heterostructured BiTeSe/BiTe nanosheets (NSs) with lateral dimensions of 1-3 μm and thickness of about 50 nm. BiTe and BiSe, as well as heterostructured BiTeSe/BiTe NSs are obtained via colloidal synthesis. Heterostructured NSs show an inhomogeneous distribution of the chalcogen atoms forming selenium and tellurium-rich layers across the NS thickness, resulting in a core/shell structure. Detailed morphological studies reveal that these structures contain nanosized pores. These features contribute to the overall thermoelectric properties of the material, inducing strong phonon scattering at grain boundaries in compacted solids. NSs are processed into nanostructured bulks through spark plasma sintering of dry powders to form a thermoelectric material with high power factor. Electrical characterization of our materials reveals a strong anisotropic behavior in consolidated pellets. It is further demonstrated that by simple thermal annealing, core/shell structure can be controllably transformed into alloyed one. Using this approach pellets with BiTeSe composition are obtained, which exhibit low thermal conductivity and high power factor for in-plane direction with of 1.34 at 400 K.
n型半导体系统BiTe-BiSe是一种已知的具有潜在高效率的低温热电材料。在此,报道了一种简便的方法来合成横向尺寸为1-3μm且厚度约为50nm的核/壳异质结构BiTeSe/BiTe纳米片(NSs)。BiTe和BiSe以及异质结构BiTeSe/BiTe NSs是通过胶体合成获得的。异质结构NSs显示出硫族原子的不均匀分布,在NS厚度上形成富含硒和碲的层,从而产生核/壳结构。详细的形态学研究表明这些结构包含纳米级孔隙。这些特征有助于材料的整体热电性能,在压实固体的晶界处引起强烈的声子散射。通过对干粉进行放电等离子烧结将NSs加工成纳米结构块体,以形成具有高功率因数的热电材料。对我们材料的电学表征揭示了固结颗粒中强烈的各向异性行为。进一步证明,通过简单的热退火,核/壳结构可以可控地转变为合金结构。使用这种方法获得了具有BiTeSe组成的颗粒,其在400K时面内方向的热导率低且功率因数高,为1.34。