Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA.
Ames Laboratory, Department of Energy, Ames, IA, 50011, USA.
Angew Chem Int Ed Engl. 2017 Mar 20;56(13):3546-3551. doi: 10.1002/anie.201612041. Epub 2017 Jan 12.
To enhance the performance of thermoelectric materials and enable access to their widespread applications, it is beneficial yet challenging to synthesize hollow nanostructures in large quantities, with high porosity, low thermal conductivity (κ) and excellent figure of merit (z T). Herein we report a scalable (ca. 11.0 g per batch) and low-temperature colloidal processing route for Bi Te Se hollow nanostructures. They are sintered into porous, bulk nanocomposites (phi 10 mm×h 10 mm) with low κ (0.48 W m K ) and the highest z T (1.18) among state-of-the-art Bi Te Se materilas. Additional benefits of the unprecedented low relative density (68-77 %) are the large demand reduction of raw materials and the improved portability. This method can be adopted to fabricate other porous phase-transition and thermoelectric chalcogenide materials and will pave the way for the implementation of hollow nanostructures in other fields.
为了提高热电材料的性能,并使其能够广泛应用,合成具有高孔隙率、低导热系数(κ)和优异的品质因数(zT)的大量空心纳米结构是有益的,但具有挑战性。在此,我们报告了一种可扩展(每批约 11.0 g)和低温胶体处理路线,用于制备 Bi Te Se 空心纳米结构。它们被烧结成多孔、块状纳米复合材料(φ 10 mm×h 10 mm),具有低κ(0.48 W m K)和在先进的 Bi Te Se 材料中具有最高的 zT(1.18)。前所未有的低相对密度(68-77%)的额外好处是大幅减少了原材料的需求,并提高了便携性。该方法可用于制备其他多孔相变和热电硫属化物材料,并为在其他领域实施空心纳米结构铺平道路。